
2009-01-0519

Using Model-Based Design to Accelerate FPGA Development
for Automotive Applications

Sudhir Sharma
The MathWorks

Wang Chen
The MathWorks

Copyright © 2009 SAE International

ABSTRACT

A recent Gartner Dataquest study predicts that the total
worldwide automotive semiconductor market will grow
from $20.1 billion in 2007 to $25.9 billion by 2010. The
study also predicts that revenue from automotive usage
of FPGAs will triple to approximately $312 million during
that same period[1].

Many of these FPGAs will be deployed in safety
applications such as back-up cameras, lane departure
warning systems, blind-spot warning system, and
adaptive cruise control. FPGAs will also be deployed in
next-generation engine electronics, emissions control,
navigation, and entertainment applications.

Automotive systems engineers are adept at using
Model-Based Design for implementing some of these
embedded applications on DSPs and microcontrollers.
Many of these engineers are new to FPGA design and
waking up to a fragmented workflow that is making it
harder to meet time-to-market and cost objectives.

For example, engineers who are migrating their systems
designs from DSPs to FPGAs are discovering that
additional verification steps such as bit-true, cycle-
accurate simulations are required to ensure that the
FPGA functions the same as the system specification.
This is a time-consuming and error-prone activity
involving file exchanges between the system designer
and the FPGA designer. Geographically distributed
teams face an even bigger challenge since the system
engineer and FPGA designer may be many miles away
from each other.

This paper illustrates how Model-Based Design
integrates the world of system designers, FPGA
designers, and verification engineers to increase
productivity and produce correct-by-construction designs
that match the system specification. Using the concept
of executable design specification, this paper discusses
how Model-Based Design streamlines both design and

verification of FPGAs for automotive applications in two
important automotive workflows:

• FPGA design and production deployment to low-
volume high-processing power applications such as
driver-assistance and infotainment systems.

• FPGA use for prototyping in high-volume applications
such as engine and steering control, where the final
production deployment will be an ASIC. In this workflow,
the proof of concept work is done using FPGAs.

INTRODUCTION

Many new cars now include electronic safety systems
such as collision avoidance, adaptive cruise control, and
lane-departure system. These new features often
require fast processing power and large memory to
handle video data streaming, image recognition, or
other signal processing, which greatly increase the
hardware and software complexity in automotive
electronic systems. Many of these complex functions
can not be implemented in software running on
traditional DSP and microcontrollers. Instead,
automotive hardware designers are now focusing on
FPGAs and ASICs.

Compared to traditional DSPs and microcontrollers
(MCUs), FPGAs and ASICs offer faster processing
speed and more functionality to support more advanced
features. Choosing between an ASIC and an FPGA
implementation depends on the application and is
beyond the scope of this paper, but, broadly speaking,
an FPGA implementation can be a faster time-to-market
and lower-cost solution than an ASIC design. FPGAs
also offer the added benefit of reconfigurability when the
design specification changes. On the other hand, an
ASIC may be the right solution for a large volume, very
high-speed, or power-sensitive application.

FPGA usage is growing rapidly because it satisfies the
automotive industry’s demands for faster processing

speed, higher logic density, shorter time-to-market
cycle, and reconfigurability[2].

Figure 1. FPGA applications in the automotive
industry.

Figure 1 lists a few of the applications where FPGAs
may be deployed. These include active safety system,
powertrain, chassis, body electronics, and infotainment
systems.

In Table1, we capture five major automotive
applications and their suitability for FPGA-based
implementation.

Active-safety systems and infotainment systems are the
most popular areas for FPGA applications. These
applications need to process large amounts of streaming
input data and provide responses in real time. Their
image processing and radar signal processing
algorithms may easily consume the processing power of
an entire DSP processor. In such applications, instead
of using a fast, stand-alone DSP, the adoption of an
FPGA as a hardware coprocessor can offer a more
compelling solution that allows the designer to use a
smaller DSP. This can result in greater system
performance at a lower cost[3,4].

FPGAs are also found in powertrain systems as a
coprocessor for engine controller tasks such as knock
detection and injector control. While ASICs are often
used in high speed applications such as gasoline direct
injection, diesel multiple injection, and electronic valve
lifting, newly introduced flash-based FPGAs may be an
attractive option for these applications[1,5].

As of two years ago, premium vehicles such as BMW 5
Series employed well over 100 MCUs to control the
various systems in the car. Automotive engineers have

been working to consolidate the functions of multiple

Applications Examples
Key
Requirements

Present Technology FPGA Viability

Active
Safety
Systems

Adaptive cruise control
Collision mitigation
Lane departure warning
Back-up camera
Blind spot warning.

Throughput
Reconfigurability

DSP and ASIC/FPGA

New systems have
more FPGAs in
them.

Yes.
As a coprocessor for video and
image processing.
For high processing speed and
reconfigurability.

Powertrain

Engine control module:
– Fuel injection
– Knock detection
– Ignition timing
Power electronics control
Transmission control
Vehicle energy
management.

Cost/Memory
Speed
Complexity
Reconfigurability

MCU (high end)

ASICs are used
today extensively in
engine control and
power electronics
control.

Yes.
As a co-processor for tasks
such as knock detection, fuel
injector control, and power
electronics control.

For HW and SW codesign.

Chassis

Steering control
ABS
Electronic stability (ESP)
Ride control
Brake-by-wire

Cost/Memory
Speed
Redundancy

MCU (mid end)

DSPs are sometimes
used for steering
control.

Yes.
Possible for power steering
control, which requires high
processing speed.

Body
Electronics

Roof, window, mirror, seat
Climate control
Instrument cluster
Central body control
Network gateway.

Cost/Memory
Low Power
Reconfigurability

MCU (low end)

Yes.
To consolidate the functions of
multiple MCUs that are
distributed around the vehicle
into one FPGA [3].

Infotainment
Systems

Navigation
Voice recognition
Digital audio/TV
Rear-seat entertainment.

Throughput
Reconfigurability

MCU and DSP

Yes.
For high processing speed and
reconfigurability.

MCUs into one FPGA to reduce the system
complexity[6]. Even as the unit costs of both DSP and
FPGA devices are falling, the growing system
complexity and increasing need for raw processing
power make FPGAs a compelling solution for many
automotive applications.

For example, Saab’s trionic engine combustion control
processing is straining the abilities of MCUs[7].
Conceivably, the engine can burn hydrocarbons and CO
in polluted air that is sucked into the intake[8]. The ECU
uses a Motorola 683xx 32-bit processor, 4Mbit of
memory, an 8-bit coprocessor, barometric sensor, and
other components[9].

By using the spark plug as an ionization probe during
each idle cycle in the four-cycle process and sensing
temperature, pressure, and unburned exhaust,
everything can be adjusted to its optimum to wring out
every bit of power available in the gasoline, based on
real-time combustion results and driving conditions.

Taking this technology farther will require more than a
faster embedded processor if it is to be done efficiently
for economy autos as well as high-end luxury vehicles.

MODEL-BASED DESIGN

Model-Based Design improves design quality and
accelerates design and verification tasks by employing
an executable specification. This executable
specification is elaborated to create hardware and
software partitioning, automatically create hardware and
software implementation code, and verify the hardware
and software implementations in the context of the
complete system (as shown in Figure 2). Significant
advantages of Model-Based Design include the fact that
it facilitates rapid design iterations and it moves the
verification process all the way to the beginning of the
design cycle. This helps detect system specification
related errors, design errors, and implementation errors
early.

G
e
n
e
ra
te

G
e
n
e
ra
te

G
e
n
e
ra
te

G
e
n
e
ra
te

Figure 2. Model-Based Design that uses an
executable specification and allows continous
system-level verification.
FPGA SYSTEM DESIGN CHALLENGE

As stated in the introduction, automotive systems
engineers are adept at using Model-Based Design for
implementing embedded applications on
microcontrollers and DSPs. They are typically new to
FPGA design. Hardware design workflow is significantly
different from software design workflow and the
transition can be difficult. The following sections outline
some of the typical problems with the manual FPGA
design workflow and propose an integrated system-level
design approach to FPGA development.

MULTI-PASS WORKFLOW

In the typical hardware system design workflow, a
system designer designs the algorithm and creates a
text-based design document and corresponding I/O
vectors for hardware engineers. FPGA designers then
translate this specification into a hardware realizable
model by hand-coding either Verilog or VHDL code, the
two common hardware description languages (HDLs).
To verify that the hand-coded HDL behavior matches
the system specification, they write extensive HDL test
benches to exercise the I/O test vectors provided by the
system designer, as shown in Figure 3.

Figure 3. Typical text-based system specification to
hardware design workflow that leads to many
errors.

While this workflow looks very straightforward, the
reality is that it is a laborious and inefficient process.

The system designers need to spend extra effort to
create and maintain the text-based design document
and test I/O vectors which are only used by FPGA
designers. Additional effort is wasted by FPGA
designers to create the module level HDL test benches
that are not usable for chip-level verification.

This workflow requires close collaboration between
system engineers and hardware engineers. However,
this level of collaboration is not always easy because
system engineers and hardware engineers may be
physically located far away from each other.

As we know, design specification changes are
inevitable. This workflow breaks down even more when
design iterations are required due to specification
changes. Working through hundreds or thousands of
lines of code is invariably more inefficient than working
at a higher level of abstraction.

VERIFICATION

Ensuring that the FPGA implementation matches the
system specification in bit-true, cycle-accurate
simulations is a time-consuming and error-prone activity
involving many file exchanges between the system
designers and the FPGA designers. As many as 10 lines
of test code may be needed for each line of hardware
implementation code. Moreover, these module level test
benches and verification scripts are often not directly
usable for FPGA system level verification.

HARDWARE AND SOFTWARE CODESIGN

Making the right partitioning choice is a complex
decision process and often requires multiple iterations.
In many automotive applications, a portion of the design
may be running on a DSP or an MCU and some time-
critical application may be running on the FPGA
coprocessor.

Since the end application requires a seamless interface
between hardware and software, engineers need to work
in an integrated design and verification environment that
allows them to evaluate various hardware and software

portioning options to achieve an optimal
implementation.

HOW MODEL-BASED DESIGN HELPS

Model-Based Design integrates the world of system
design engineers, FPGA designers, and verification
engineers to increase productivity and produce correct-
by-construction designs that match the executable
system specifications.

Figure 4 illustrates a typical Model-Based Design
workflow where MATLAB and Simulink are used as the
environments for capturing system-level algorithms and
design specifications. The steps in this workflow include:

1. Create an executable specification consisting of
implementable algorithms, system model, and
system-level verification environment.

2. Verify the system model against functional
requirements using simulation.

3. Automatically generate production software for
embedded processors and synthesizable HDL code
for ASICs and FPGAs.

4. Employ the executable specification as a test bench
to verify software and hardware implementations.

Figure 4. MATLAB and Simulink as the foundation
of Model-Based Design.

Engineers developing control algorithms that target
microcontrollers and DSPs make extensive use of
automatic production code generation technologies.
Additionally, off-the-shelf interfaces between the code
generator and integrated design environments (IDE)
enable them to perform equivalence testing using, for
example, processor In-the-loop (PIL).

On the hardware side, recent advances in automatic
HDL code generation technology, such as Simulink HDL
Coder from The MathWorks provides bit-true and cycle-
accurate synthesizable HDL code for ASIC or FPGA
implementation.

Reusing the executable specification as a system level
test bench allows the engineers to ensure that final
hardware and software implementations match the true
intent of the system design engineer.

In this workflow, cosimulation tools enable you to verify
the correct functionality of your HDL code with industry
leading HDL simulators from Mentor Graphics,
Cadence, and Synopsys.

Together, HDL code generation and cosimulation help
engineers shorten the two most time consuming and
error prone aspects of system design—coding and
verification.

The iterative nature of embedded system design and
chip design requires use of automated workflows that
allow you to do rapid prototyping of your ideas before
committing to a particular implementation.

Model-Based Design enables systems designers to do
just that. You can iterate your design to achieve optimal
area-speed-power implementation, focus on design
architecture and value-added IP, and then automatically
generate the implementation or prototyping code.

By elevating the abstraction level from HDL code to
system level design, Model-Based Design enables chip
designers to focus on the many other tasks that complex
IC design involves, including IP integration and
verification for the rest of the chip.

HARDWARE AND SOFTWARE PARTIONING

Successful system level design requires engineers to
have a thorough understanding of their application, the
environment where it will operate, and other factors
such as the baseline performance.

Figure 5. System-level specifications that drive
hardware and software partitioning and
implementation.

As illustrated in Figure 5, these high level requirements
then drive the decisions of choosing hardware and
software partitioning, hardware and software design and

implementation, and the choice of target platform, such
as DSP vs. microcontroller or FPGA vs. ASIC.

Using Model-Based Design, engineers can use the
executable specification to generate C code for a DSP,
evaluate the DSP performance, and then evaluate the
same algorithm on an FPGA. In contract to working at
the C and HDL level, engineers gain enormous
productivity by working at the high level of abstraction
afforded by Model-Based Design.

REUSABILITY

Since both system design and software and hardware
implementation are using one golden reference model, it
is very easy to maintain the model and reuse it later.

WORKFLOW WITH CASE STUDY

We illustrate the implementation of a Model-Based
Design workflow by developing a knock detection
algorithm. In this case study, we use MATLAB and
Simulink as the foundation tools for creating the
executable specification, elaborating this specification
for hardware and software code generation, and
verifying that the hardware and software
implementations match the original executable
specification.

We are motivated to use a knock detection algorithm, as
many automotive engineers are already using a Model-
Based Design workflow for embedded system design
with DSPs and MCUs. We show how they can easily
target an FPGA using the same concepts.

SYSTEM LEVEL DESIGN

The internal combustion engine relies on precise timing
to burn the air and fuel mixture. Premature ignition of
the air and fuel mixture causes the engine to produce a
knocking in the engine, as shown in Figure 6. This
knocking can lead to engine damage if left uncorrected.

Fortunately, engineers have developed signal
processing spectral analysis techniques to easily identify
engine knock. By leveraging this knowledge, engineers
can optimize the performance of ignition timing control
logic engine, improve the engine performance, and
prevent engine knocking.

Figure 6. Premature ignition of the air and fuel
mixture in internal combustion engine that can lead
to engine knocking.

Executable Design Specification

The model in Figure 7 shows the executable
specification of an engine knock detection and
correction system. This model includes the system
specification and the knock detection algorithm. The
system specification provides the system-level
constraints and operating environment for the algorithm.
At this point in the workflow, the executable specification
is used to model, simulate, and iterate the algorithm in
the context of the complete system. The focus of the
executable specification is the correct functional
development of the knock detection algorithm, with little
consideration for implementation detail.

Figure 7. Executable specification for engine knock
detection and correction system.

The continuous-time knock generator subsystem shown
in Figure 7 is created to produce a knocking condition
based on characteristics of sampled engine data

The executable specification shown in Figure 7 includes
the engine spark knock simulator and the analog-to-
digital converter (ADC), the electronic spark advance
(ESA), and digital-to-analog converter (DAC)
subsystems as the testing environment for the knock
detector algorithm. The ADC is used to sample the
knock sensor signal coming from the engine knock
simulator model. This parameterized model is based on
a combination of theoretical and empirical data. It
contains elements to represent a fundamental knocking
frequency of 6 KHz, as well as first and second
harmonics. Moreover, the model can be configured to
inject additional noise into the system.

The knock detector subsystem, which is the target
design of this case study, is responsible for detecting
engine knock independently for each cylinder. The
electronic spark advance subsystem adjusts the ignition
timing signal to compensate for engine knock. If engine
knock is detected, the spark timing is reduced to prevent
knock. If no knock is detected, the spark timing is
advanced to optimize engine performance and
emissions.

The knock detector algorithm should identify the engine
knock fast and correctly. As engine events occur at over
1 KHz at 6000 RPM, the knock detector system should
meet the timing requirement for engine controller to fine
tune the ignition timing and fuel injection.

Design the Floating Point Algorithm

With these design constraints in mind, we next create
the floating-point model of the knock detection
algorithm, shown in Figure 8.

Fundamental signal processing techniques are used to
extract knock frequency content from the digitized knock
sensor and estimate the knock energy. In this system,
only one knock sensor is used. The crank angle (CA)
signal is required to determine the knock window
associated with each cylinder. The knock energy
associated with each cylinder's knock window is
compared with a threshold to determine if cylinder knock
is present. The knock energy is extracted using a simple
band-pass filter, as shown in Figure 9.

The threshold to determine engine knock is often
composed of a of lookup table, which takes into account
signals such as RPM, manifold pressure, throttle
position, and engine coolant temperature. For simplicity,
the example in Figure 10 just uses RPM to determine
the appropriate threshold.

The knock detect output is an array containing
independent knock detect indicators for each cylinder.

As shown in Figure 11, the pulses of sinusoid signals in
the first axis represent engine knock. The second axis
represents the output of the knock sensor, which will
output ”true” or digital logic ”1” when engine knock is
detected. The spark ignition for this cylinder starts at a
given crank angle (in degrees). During the intervals
where spark is detected the cylinder spark injection
signal is retarded (corresponding crank angle is
decreased). Once no knock is detected, the spark
injection signal is then advanced (corresponding crank
angle is increased) at a step size less aggressive than
the when spark is detected. As shown in this example, if
the ignition timing continues to advance and knocking
occurs, the ignition timing is again retarded.

FIXED-POINT CONVERSION

Algorithms can be implemented in digital hardware to
process either floating-point numbers or fixed-point
numbers. At the expense of dynamic range, hardware
implementations with fixed-point data type result in a
smaller, more power efficient, faster, and cost-effective

solution.

The Fixed-Point Conversion Advisor utility is used in this
case study to help automatically determine the precision
needed.

To ensure equivalency, floating-point models and fixed-
point models are compared side-by-side, as shown in
Figure 12. When we execute this model, we see the
output of the “golden specification,” the output from the
fixed-point model, and the difference between the two
models. We can rapidly iterate this fixed-point model
and try different fixed-point settings to achieve the right
balance for your application.

Figure 11. Engine knock waveforms.

Figure 9. Knock energy calculated using a band-
pass digital filter.

Figure 10. Lookup table implementation of knock
detection energy threshold.

Figure 12. Comparison of floating-point and fixed-
point models side-by-side to achieve optimal
performance.
HARDWARE-SOFTWARE PARTITION

In this case study, we implement the knock detector
algorithm on an FPGA and implement the spark control
algorithm in software running on a microcontroller.

AUTOMATIC CODE GENERATION

Once the fixed-point model meets design requirements,
we can invoke the Simulink HDL Coder to automatically
generate HDL code and test benches directly from the
fixed-point model. The generated HDL code matches
the fixed-point model in bit-true, cycle-accurate
simulations.

The automatically generated HDL code is correct by
construction, enabling the designer to save initial hand-
coding time and debugging time. Since the designers
are working at the level of a system model and not at
the level of HDL code, they are able to create quick
prototypes and design iterations to keep up with rapidly
changing specifications.

For many reasons, including verification, it is important
that automatically generated code is readable and
integrates seamlessly with hand-written HDL code.
Imagine trying to debug your design and tracing a signal
into a block where you can not read the HDL code.

SYSTEM LEVEL VERIFICATION

A corresponding HDL test bench is also generated by
Simulink HDL Coder. The test bench input/output
vectors are generated directly from the fixed-point
design specification model to verify that the generated

FPGA implementation meets the functional
specifications.

EDA simulator link products enable you to cosimulate
the HDL code with MATLAB and Simulink so you can
ensure that your FPGA implementation matches the
original executable design specification.

Figure 13. Cosimulating the HDL code with the
fixed-point model for ensuring correct hardware
implementation.

As shown in Figure 13, the knock detector module is
implemented in an FPGA, and the spark advance
algorithm is implemented in a microcontroller. We use
this model as a test bench to verify both the HDL and C
implementations. For the HDL cosimulation, we used
EDA Simulator Link MQ (for use with ModelSim).

RAPID ITERATION

Nearly 60%[10] of integrated circuit designs require
rework. In addition to functional errors, performance
issues, or a changed specification could be the cause.
Size, power, or speed may need to be optimized. To
address these factors, designers may need to go back to
the fixed-point model and adjust the bit-widths, simplify
the algorithm, or choose another implementation.

Because engineers using Model-Based Design are
invested in the model and not the HDL code, they can
readily iterate the fixed-point model to quickly create
alternative implementations. System engineers can
focus their time on refining the algorithm, and hardware
engineers can focus their time on optimizing the
implementation for specific targets.

CONCLUSION

In summary, Model-Based Design provides a design
flow that directly maps executable system specification
into hardware. Model-Based Design permits system
engineers and HDL engineers to collaborate using
functional models of the design specification that can be
executed and understood more easily, thus significantly
speeding up design and verification activities.

Starting from a golden Simulink system specification,
the design engineers can quickly generate
synthesizable, target-independent, human-readable, and
correct-by- construction HDL code. This workflow
enables design engineers to quickly prototype and
iterate their algorithm to keep up with rapidly changing
specifications and standards.

Using the cosimulation tools, engineers can do system-
level verification to ensure that the HDL code is
functionally equivalent to the system specification.

REFERENCES

1. C. Maxfield, “FPGAs gear up for new automotive
application”, EETimes, Oct 16, 2007.

2. M. Gabrick, et al, “FPGA Considerations for
Automotive Applications,” 2006 SAE World
Congress, April 3-6, 2006.

3. T. Costlow, “Looking forward to safer highways,”
Automotive Engineering International Online, Sep,
2008.

4. T. Mehta, “How FPGAs Enable Automotive
Systems,” Altera Corporation.

5. M. Mason, et al, “FPGA Reliability in Space-Flight
and Automotive Applications”, FPGA and
Programmable Logic Journal, 2005

6. M. Traub, et al, “Generating hardware descriptions
from automotive function models for a FPGA-based
body controller: A case study”, MathWorks
Automotive Conference 2008.

7. http://www.saabhistory.com/2007/11/19/saab-trionic-
saab-innovation/

8. http://www.autobloggreen.com/2007/11/13/video-
saab-trionic-actually-cleans-the-air/

9. http://pikkupossu.1g.fi/tomi/projects/trionic/trionic.ht
ml

10. Dr. Jack Horgan, “Hardware/Software Co-
verification, Dr. Jack Horgan, March 29, 2004.
http://www10.edacafe.com/nbc/articles/view_weekly.
php?newsletter=1&run_date=29-Mar-2004

