Yet Another Look at the FFT

Plots show structure of finite fourier transform

Try this:
plot(fft(eye(17)))

You will be drawing a picture of the Finite Fourier Transform of
the identity matrix of order 17. You should see:

|
08}
06t
04}
0212 :
i
0.2

04t

-06F

-0.8 -

R ' L i
-1 -0.5 0 0.5 1

(You might want to set axis(‘square’) and
axis([-1 1 -1 1]) first, and you'll see line types and
colors we’re not reproducing here.)

There are 17 points around the unit circle in the complex
plane. Each point is connected to every other point. This is the
complete graph on 17 points.

But now try 16 points:

plot(fft(eye(16)))

You should see:

]
0.8}
06f
04 L7

0.2r

0 i
0.2}t
04
-06

-0.8 -

There are 16 points around the circle, but some of the con-
nections are missing. There is a horizontal line, but no matching
vertical line. In fact, some of the points are connected to only 8,
12, or 14 others, rather than the 15 others that would be neces-
sary to get a complete graph.

What’s going on here? Well, it has something to do with the
fact that 17 is a prime number, but 16 is a power of 2. Why do
we care? Because a complete explanation sheds some light on
the behavior of the fft algorithm. For 16 points there is a Fasz
Finite Fourier Transform (that’s £fft with three fs), but for 17
points there isn’t. The missing lines in our graph are directly
related to the speed of the Fourier transform algorithm.

We’re not talking minor speed differences. On the ancient
10 MHz PC laptop where I happen to be working, the MATLAB
ffft on 512 points takes less than half a second, while the fft
on 511 points over 7 seconds. (And, the fft on 513 points takes
about 2.3 seconds because 513 = 3*3*3*19, but 'm getting
ahead of myself.)

Chuck Denham first showed me these
plot(fft(eye(n))) pictures a few years ago, but I didn’t
really understand them until I decided to write about them for
the newsletter.

While investigating these £t plots, I learned a lot from a
new book published by SIAM, Marrix Frameworks for the Fast
Fourier Transform, by Charles Van Loan. Charlie is a big MAT-
LAB fan. His new book uses MATLAB notation. Another book
he wrote with Tom Coleman, Handbook for Matrix Computations,
also published by STAM, has a chapter on MATLAB. But I don’t
think he knows about fft plots; I hope he reads this newsletter.

Here is a partial explanation. Let x be a column vector of
length n. The fft (x) could be computed by a matrix-vector
product

fft(x) = F*x

where F is the complex n-by-n Fourier matrix whose elements
are powers of @, an nth root of unity:

j = sqgrt(-1)

omega = exp(-2*pi*j/n)

for i=0:n-1, for k=0:n-1
F(i+1,k+1) = omega " (i*k);

end, end

Van Loan calls F the DFT matrix, for Discrete Fourier
Transform. It is within a scale factor of being a unitary matrix:

F*F = n*l

where I = eye(n,n). Sothe inverse of F is F’ /n. This is
why the inverse fft is just like the fFt itself, with a sign flip
and a scale factor of n.

Using F*x to compute Tt (x) for a vector of length n

would require n2 multiplications. If we double the length of x,
it would take four times as long to compute fft (x). This is
essentially what happens for some values of n, like n = 511.
But for other values of n the computation can be done with
many fewer operations.

The key to fast algorithms is to find a “sparse factorization”,
F = F1*F2*...*Fm where each Fk has only a few nonzero
elements. Then F*x can be computed with fewer operations.

If n is an even number, it is always possible to express F as
the product of two sparse matrices, F = F1*F2. Repeating
this factorization, if n is a power of 2, say n = 2" where
m = log2(n), then it is possible to express F as the product
of m matrices, each of which has only four nonzero elements, and
a permutation. This leads to an algorithm involving only
4*n*1og2(n) arithmetic operations and some fancy
subscripting.

LetI = eye(n). The plotof fft(I) is the same as
plot (F). Itis the union of the n pictures,
plot (Fft(I(:,k))).Burfft(I(:,k)) = F(:,k)isa
vector of powers of ®, which gives the points on the unit circle
in the complex plane. To see the individual plots, we can use
the general form of a MATLAB for statement where the loop
variable is successively assigned the columns of a matrix.

for f = fft(eye(n))
plot(f)
pause

end

Here is plot(F(:,6)) whenn = 16. You can see the
line start at @, go to '°, then ®®. The next point would be
®% but, because ! = 1, this is the same as ®*. Then comes
o’, o, @' = ®% and so on. The exponents on the powers of ®
are obtained by taking the multiples of 5 and reducing them
modulon = 16. In this case, we eventually touch all 16 points.

But here is the plot F(:,5) forn = 16. We start at @,

go to ¥, then ®'?, then '° = 1, then back to ®*. We see only
four line segments connecting the four points, because each seg-
ment has actually been drawn four times.

In general, the plot (fft (I(:,k+1))) starts at ®* and
connects to the powers of @ with exponents rem(2*k,n),
rem(3*k,n), rem(4*k,n), etc. Now here is the key point.
If n is prime, then rem(j*k,n) will not be zero until j or k is
equal to n, so none of the powers of ® are repeated and we get
the complete graph on n points. But if n is not prime, then
rem(j*k,n) will be 0 when, for example, j*k = n, so some
powers of ® will be repeated and others will be skipped.

As Van Loan (and hundreds of other writers) explain, the
possibility of getting a Fast Finite Fourier Transform by factoring
F into F1*F2*. .. *Fm with sparse Fk is directly related to the
possibility of factoring n into a product of powers of small
primes. And, as we have seen here, this is directly related to
structure of the graph obtained by plot (fft(eye(n))).

I’'m not completely satisfied with the explanation I've pre-
sented here. It is not very precise. In particular, exactly what
line segments are missing from plot (fft(eye(n)))? Hereis
a plot of the missing segments when n = 16; this graph is the
complement of the second graph shown earlier.

w

0.6

/
0.4r

0.2

NN

! //

-0.4 - /
/
-0.6

-0.8

R

I'won’t tell you how I generated this plot because it’s not very
elegant. If anybody can tighten up this discussion and give a
clean, number-theoretic characterization of these graphs and
their relationship to the operation counts for fft, I'd sure like to
hear about it.

