Documentation

This is machine translation

Translated by
Mouse over text to see original. Click the button below to return to the English verison of the page.

acsch

Inverse hyperbolic cosecant

Y = acsch(X)

Description

Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

The acsch function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.

Examples

collapse all

Graph the inverse hyperbolic cosecant function over the domains and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2))
grid on
xlabel('x')
ylabel('y')

collapse all

Inverse Hyperbolic Cosecant

For real values $x$ in the domain $x<0$ and $x>0$, the inverse hyperbolic cosecant satisfies

${\text{csch}}^{-1}\left(z\right)={\mathrm{sinh}}^{-1}\left(\frac{1}{z}\right)=\mathrm{log}\left(\frac{1}{x}+\sqrt{\frac{1}{{x}^{2}}+1}\right).$

For complex numbers $z=x+iy$, the call acsch(z) returns complex results.

Tall Array Support

This function fully supports tall arrays. For more information, see Tall Arrays.