# Documentation

### This is machine translation

Translated by
Mouse over text to see original. Click the button below to return to the English verison of the page.

# isonormals

Compute normals of isosurface vertices

## Syntax

`n = isonormals(X,Y,Z,V,vertices)n = isonormals(V,vertices)n = isonormals(V,p)n = isonormals(X,Y,Z,V,p)n = isonormals(...,'negate')isonormals(V,p)isonormals(X,Y,Z,V,p)`

## Description

`n = isonormals(X,Y,Z,V,vertices)` computes the normals of the isosurface vertices from the vertex list, `vertices`, using the gradient of the data `V`. The arrays `X`, `Y`, and `Z` define the coordinates for the volume `V`. The computed normals are returned in `n`.

`n = isonormals(V,vertices)` assumes the arrays `X`, `Y`, and `Z` are defined as `[X,Y,Z] = meshgrid(1:n,1:m,1:p)` where ```[m,n,p] = size(V)```.

`n = isonormals(V,p)` and `n = isonormals(X,Y,Z,V,p)` compute normals from the vertices of the patch identified by the handle `p`.

`n = isonormals(...,'negate')` negates (reverses the direction of) the normals.

`isonormals(V,p)` and `isonormals(X,Y,Z,V,p)` set the `VertexNormals` property of the patch identified by the handle `p` to the computed normals rather than returning the values.

## Examples

collapse all

Compare the effect of different surface normals on the visual appearance of lit isosurfaces. In one case, the triangles used to draw the isosurface define the normals. In the other, the isonormals function uses the volume data to calculate the vertex normals based on the gradient of the data points. The latter approach generally produces a smoother-appearing isosurface.

Define a 3-D array of volume data.

```data = cat(3,[0 .2 0; 0 .3 0; 0 0 0],... [.1 .2 0; 0 1 0; .2 .7 0],... [0 .4 .2; .2 .4 0;.1 .1 0]); data = interp3(data,3,'cubic'); ```

Draw an isosurface from the volume data and add lights. This isosurface uses triangle normals.

```figure subplot(1,2,1) fv = isosurface(data,.5); p1 = patch(fv,'FaceColor','red','EdgeColor','none'); view(3) daspect([1,1,1]) axis tight camlight camlight(-80,-10) lighting gouraud title('Triangle Normals') ```

Draw the same lit isosurface using normals calculated from the volume data.

```subplot(1,2,2) fv = isosurface(data,.5); p2 = patch(fv,'FaceColor','red','EdgeColor','none'); isonormals(data,p2) view(3) daspect([1 1 1]) axis tight camlight camlight(-80,-10) lighting gouraud title('Data Normals') ```

These isosurfaces illustrate the difference between triangle and data normals.