# Documentation

### This is machine translation

Translated by
Mouse over text to see original. Click the button below to return to the English verison of the page.

# vander

Vandermonde matrix

## Description

example

A = vander(v) returns the Vandermonde Matrix such that its columns are powers of the vector v.

## Examples

collapse all

Use the colon operator to create vector v. Find the Vandermonde matrix for v.

v = 1:.5:3
A = vander(v)
v =

1.0000    1.5000    2.0000    2.5000    3.0000

A =

1.0000    1.0000    1.0000    1.0000    1.0000
5.0625    3.3750    2.2500    1.5000    1.0000
16.0000    8.0000    4.0000    2.0000    1.0000
39.0625   15.6250    6.2500    2.5000    1.0000
81.0000   27.0000    9.0000    3.0000    1.0000

Find the alternate form of the Vandermonde matrix using fliplr.

A = fliplr(vander(v))
A =

1.0000    1.0000    1.0000    1.0000    1.0000
1.0000    1.5000    2.2500    3.3750    5.0625
1.0000    2.0000    4.0000    8.0000   16.0000
1.0000    2.5000    6.2500   15.6250   39.0625
1.0000    3.0000    9.0000   27.0000   81.0000

## Input Arguments

collapse all

Input, specified as a numeric vector.

Data Types: single | double
Complex Number Support: Yes

collapse all

### Vandermonde Matrix

For input vector $v=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[\begin{array}{cccc}{v}_{1}& {v}_{2}& \dots & {v}_{N}\end{array}\right]$, the Vandermonde matrix is

$\left[\begin{array}{cccc}{v}_{1}^{N-1}& \cdots & {v}_{1}^{1}& {v}_{1}^{0}\\ {v}_{2}^{N-1}& \cdots & {v}_{2}^{1}& {v}_{2}^{0}\\ & ⋰& ⋮& ⋮\\ {v}_{N}^{N-1}& & {v}_{N}^{1}& {v}_{N}^{0}\end{array}\right]$

The matrix is described by the formula $A\left(i,j\right)=v{\left(i\right)}^{\left(N-j\right)}$ such that its columns are powers of the vector v.

An alternate form of the Vandermonde matrix flips the matrix along the vertical axis, as shown. Use fliplr(vander(v)) to return this form.

$\left[\begin{array}{cccc}{v}_{1}^{0}& {v}_{1}^{1}& \cdots & {v}_{1}^{N-1}\\ {v}_{2}^{0}& {v}_{2}^{1}& \cdots & {v}_{2}^{N-1}\\ ⋮& ⋮& \ddots & \\ {v}_{N}^{0}& {v}_{N}^{1}& & {v}_{N}^{N-1}\end{array}\right]$