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Abstract—This paper proposes an uncorrelated multilinear
discriminant analysis (UMLDA) framework for the recognition of
multidimensional objects, known as tensor objects. Uncorrelated
features are desirable in recognition tasks since they contain
minimum redundancy and ensure independence of features. The
UMLDA aims to extract uncorrelated discriminative features
directly from tensorial data through solving a tensor-to-vector
projection. The solution consists of sequential iterative processes
based on the alternating projection method, and an adaptive reg-
ularization procedure is incorporated to enhance the performance
in the small sample size (SSS) scenario. A simple nearest-neighbor
classifier is employed for classification. Furthermore, exploiting
the complementary information from differently initialized and
regularized UMLDA recognizers, an aggregation scheme is
adopted to combine them at the matching score level, resulting
in enhanced generalization performance while alleviating the
regularization parameter selection problem. The UMLDA-based
recognition algorithm is then empirically shown on face and gait
recognition tasks to outperform four multilinear subspace solu-
tions (MPCA, DATER, GTDA, TR1DA) and four linear subspace
solutions (Bayesian, LDA, ULDA, R-JD-LDA).

Index Terms—Dimensionality reduction, face recognition, fea-
ture extraction, fusion, gait recognition, multilinear discriminant
analysis, regularization, tensor objects.

1. INTRODUCTION

ODAY, there are growing interests in the processing of

multidimensional objects, formally known as tensor ob-
jects, in a large number of emerging applications. Tensors are
considered to be the extensions of vectors and matrices. The el-
ements of a tensor are to be addressed by a number of indices [1],
where the number of indices used in the description defines the
order of the tensor object and each index defines one “mode.”
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By this definition, vectors are first-order tensors and matrices
are second-order tensors. For example, gray-level images are
naturally second-order tensors with the column and row modes
[2], [3] and color images are 3-D objects (third-order tensors)
with the column, row, and color modes [4]. Three-dimensional
gray-level objects [5], such as 3-D gray-level faces [6], [7], are
naturally third-order tensors with the column, row and depth
modes, while the popular Gabor representation of gray-level im-
ages [8] are third-order tensors with the column, row, and Gabor
modes. Many sequential (space-time) signals, such as surveil-
lance video sequences [9], are naturally higher order tensors.
Gray-level video sequences can be viewed as third-order ten-
sors with the column, row, and time modes and color video se-
quences are fourth-order tensors with an additional color mode.
Among the wide range of applications involving tensor objects
[10], feature extraction for recognition purposes is an arguably
most important one. Therefore, this paper focuses on feature ex-
traction for tensor object recognition.

In pattern recognition applications, the tensor space where a
typical tensor object is specified is often high dimensional, and
recognition methods operating directly on this space suffer from
the so-called curse of dimensionality [11]. On the other hand,
the entries of a tensor object are often highly correlated with
surrounding entries, and the samples from a particular tensor
object class, such as face images, are usually highly constrained
and belong to a subspace, a manifold of intrinsically low dimen-
sion [11], [12]. Feature extraction or dimensionality reduction
is thus an attempt to transform a high-dimensional data set into
a low-dimensional space of equivalent representation while re-
taining most of the underlying structure [13]. Traditional feature
extraction algorithms, such as the classical principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA), are
linear algorithms that operate on 1-D objects, i.e., first-order ten-
sors (vectors). To apply these linear algorithms to higher order
(greater than one) tensor objects, such as images and videos,
these tensor objects have to be reshaped (vectorized) into vec-
tors first. However, it is well understood that such reshaping
(vectorization) breaks the natural structure and correlation in the
original data, reducing redundancies and/or higher order depen-
dencies present in the original data set, and losing potentially
more compact or useful representations that can be obtained in
the original tensorial forms [10]. Thus, dimensionality reduc-
tion algorithms operating directly on the tensor objects rather
than their vectorized versions are desirable.
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Recently, multilinear subspace feature extraction algorithms
[2], [10], [14], [15] operating directly on the tensorial represen-
tations rather than their vectorized versions are emerging, es-
pecially in the popular area of biometrics-based human recog-
nition, e.g., face and gait recognition. The multilinear principal
component analysis (MPCA) framework [10], a multilinear ex-
tension of the PCA, determines a multilinear projection that
projects the original tensor objects into a lower dimensional
tensor subspace while preserving the variation in the original
data. Similar to PCA, MPCA is an unsupervised method as well
and the feature extraction process does not make use of the class
information. On the other hand, supervised multilinear feature
extraction algorithms have also been developed. Since LDA is
a classical algorithm that has been very successful and applied
widely in various applications, there have been several variants
of its multilinear extension proposed, named multilinear dis-
criminant analysis (MLDA) in general in this paper. The 2-D
LDA (2DLDA) first introduced in [16] was later extended to per-
form discriminant analysis on more general tensorial inputs [2].
In this so-called discriminant analysis with tensor representation
(DATER)! approach of [2], a tensor-based scatter ratio criterion
is maximized. A so-called general tensor discriminant analysis
(GTDA) algorithm is proposed in [15] where a scatter difference
criterion is maximized [15]. DATER and GTDA are both based
on the tensor-to-tensor projection (TTP) [17]. In contrast, the
tensor rank-one discriminant analysis (TR1DA) algorithm [18],
[19] obtains a number of rank-one projections with the scatter
difference criterion from the repeatedly calculated residues of
the original tensor data, which is in fact the heuristic method
in [20] for tensor approximation, and it can be viewed to be
based on the tensor-to-vector projection (TVP) [17]. The mul-
tilinear extensions of linear graph-embedding algorithms were
introduced similarly in [21]-[25].

In the existing MLDA variants [2], [15], [18], [19], the atten-
tion focused mainly on the objective criterion in terms of (ei-
ther the ratio of or the difference between) the between-class
scatter and the within-class scatter since it is well known that the
classical LDA aims to maximize Fisher’s discrimination crite-
rion (FDC). However, they did not take the correlations among
features into account. In other words, an important property of
the classical LDA is ignored in these developments: the clas-
sical LDA derives uncorrelated features, as proved in [26] and
[27], where the uncorrelated LDA (ULDA) introduced in [28] is
shown to be equivalent to the classical LDA. Uncorrelated fea-
tures contain minimum redundancy and ensure independence
of features [27], [29]. They are highly desirable in practical
recognition tasks since the subsequent classification task can be
greatly simplified.

Motivated by the discussions above, this paper aims to de-
velop a new MLDA solution that extracts uncorrelated features,
named as the uncorrelated MLDA (UMLDA). The proposed
UMLDA extracts discriminative features directly from tenso-
rial data through solving a TVP so that the traditional FDC is
maximized in each elementary projection, while the features ex-
tracted are constrained to be uncorrelated. The solution is iter-

Here, we use the name given when the algorithm was first proposed, which
is more commonly refereed to in the literature.
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ative, based on the alternating projection method (APM), and
an adaptive regularization factor is incorporated to enhance the
performance in practical applications where the input dimen-
sionality is very high but the sample size per class is often lim-
ited, such as face or gait recognition [30], [31]. The extracted
features are classified through a simple classifier. Furthermore,
as different initialization or regularization of UMLDA results in
different features, an aggregation scheme that combines these
features at the matching score level using the simple sum rule is
adopted to enhance the recognition performance, with the reg-
ularization parameter selection problem alleviated at the same
time.

The main contributions of this work are as follows.

1) The introduction of a UMLDA algorithm for uncorrelated
discriminative feature extraction from tensors. As a mul-
tilinear extension of LDA, the algorithm not only obtains
discriminative features through maximizing the traditional
scatter-ratio-based criterion, but also enforces a constraint
so that the features derived are uncorrelated. This con-
trasts to the traditional approach of linear learning algo-
rithms [30], [32], [33], where vector rather than tensor rep-
resentation is used and thus the natural structural infor-
mation is destroyed. It also differs from the MLDA vari-
ants in [2], [15], [18], and [19], where there are correla-
tions among extracted features. Another difference from
the works in [2] and [15] is that a TVP rather than a TTP
is used here and this work takes a systematic approach
to solve such a TVP, in contrast with the heuristic ap-
proach in [18] and [19]. Furthermore, it provides a new
approach with constraint enforcement in developing mul-
tilinear learning algorithms.

2) The incorporation of an adaptive regularization procedure
where the within-class scatter estimation is increased
through a data-independent regularization parameter. This
takes into account the practical small sample size (SSS)
problem, which often arises in biometrics applications,
and the iterative nature of UMLDA, different from the
scatter estimation without regularization in [2], [15], [18],
[19].

3) The adoption of an aggregation scheme that combines
several differently initialized and differently regularized
UMLDA feature extractors, which produce different fea-
tures, at the matching score level to achieve enhanced
recognition performance while alleviating the regu-
larization parameter selection problem faced in most
regularization methods.

The rest of this paper is organized as follows. Section II in-
troduces the notations and basic multilinear algebra operations,
as well as the TVP. In Section III, the problem of UMLDA is
formulated and an iterative solution is derived, with an adap-
tive regularization procedure introduced for better generaliza-
tion in the SSS scenario. Next, the classifier employed is de-
scribed and issues regarding the initialization method, projec-
tion order, termination criteria, and convergence are addressed
in this section, followed by the computational aspects and a brief
discussion on the connections to LDA and other MLDA vari-
ants. Section IV presents the matching score level aggregation of
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TABLE 1
LIST OF SYMBOLS

Xm the mth input tensor sample, m = 1,..., M
u™ the n-mode projection vector, n = 1,..., N
p=1,..,P the index of the EMP

P the number of EMPs in TVP

{uf,")T,n =1,..,N}

the pth EMP
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Ym the projection of X, on the TVP {ug,”)T,n =1,..., N}f::l

Ym(P) = ym, = gp(m) the projection of the mth sample X, on the pth EMP {u§,")T7 n=1,..,N}
S};p the between-class scatter of the pth projected features {ym,,m =1,..., M}
S",'Vp the within-class scatter of the pth projected features {ym,,m =1,..., M}
gp the pth coordinate vector

Fy = ;é:, the Fisher’s discrimination criterion for the pth EMP

k the iteration step index in the UMLDA algorithm

K the maximum number of iterations in UMLDA

0 the regularization parameter

a=1,..,A the index of the feature extractor in aggregation

A the number of feature extractors to be aggregated

Cm the class label for the mth training sample

vec(A) the vectorized representation of the tensor A

L the number of training samples for each class (subject)

C the number of classes (subjects) in training

multiple UMLDA feature extractors that are differently initial-
ized and regularized to enhance the recognition performance. In
Section V, experiments on two face databases and one gait data-
base are reported. The properties of the proposed UMLDA solu-
tions are first illustrated, and detailed recognition results are then
compared against competing linear solutions as well as multi-
linear solutions. Finally, Section VI draws the conclusion of this
work.

II. MULTILINEAR BASICS AND THE TENSOR-TO-VECTOR
PROJECTION

This section introduces the foundations that are fundamen-
tally important for the flow of this paper. First, we review the no-
tations and some basic multilinear operations that are necessary
in presenting the proposed MLDA solution. Second, the TVP
used in the proposed algorithm is described in detail. Table I
summarizes the important symbols used in this paper for quick
reference.

A. Notations and Basic Multilinear Algebra Concepts

The notations in this paper follow the conventions in the mul-
tilinear algebra, pattern recognition, and adaptive learning liter-
ature. In this paper, we denote vectors by lowercase boldface
letters, e.g., x; matrices by uppercase boldface letters, e.g., U;
and tensors by calligraphic letters, e.g., A. Their elements are
denoted with indices in parentheses. Indices are denoted by low-
ercase letters and span the range from 1 to the uppercase letter
of the index, e.g., n = 1,2,..., N. Throughout this paper, the

discussion is focused on real-valued vectors, matrices, and ten-
sors only and the extension to complex-valued data is left for
future work.

An Nth-order tensor is denoted as A € RIxT2XXIn ¢
is addressed by N indices ¢,,, n = 1,..., N, and each ¢,, ad-
dresses the n-mode of .A. The n-mode product of a tensor .A by
a matrix U € R7»*I» denoted by A x, U, is a tensor with

entries

(AXn U)(i1, .oy in—1,Jn, ng1s- - -5 iN)

=) " A(ir,. . yin) - Ulnsin). (1)

in

The scalar product of two tensors A, B € Rt xT2xXIn jg de-
fined as

(A,B) =" Ain,ia, - yin) - Blin,ia, - - yin).

11 22 N

2
The “n-mode vectors” of A are defined as the I,,-dimensional
vectors obtained from .4 by varying the index 7,, while keeping
all the other indices fixed. A rank-one tensor A equals to the
outer product of N vectors: A = u ou® o-..ou™), which
means that A(i1, iz, ...,ix) = u® (i) -u®(iy) - - - u®™(iy)
for all values of indices. Unfolding A along the n-mode is de-
noted as A,y € R X (Lol X Tongr o xXIN) - and the
column vectors of A(,) are the n-mode vectors of A. An
example of the 1-mode vectors of a tensor A € R0%8%6 cap
be found in Fig. 1(a).
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10x8x6

vectors

projection 1x8x6

1T, 2)T, 3)T n i
A xqu"xou®Txu® projection

u® 8x1
6x1
(@

1st EMP {u;"", u,®" u,®h

»(1] %

2nd EMP {u,"", u,®", u STyl %

(1x10) (1x8) (1x6) - O

: : O
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10x8x6 {ue £ £ }'@n.

(b)

Fig. 1. (a) Elementary multilinear projection (EMP). (b) Tensor-to-vector projection (TVP).

B. Tensor-to-Vector Projection

The UMLDA framework developed in this paper takes a
multilinear subspace (or tensor subspace) [21] approach of
feature extraction, where tensorial data is projected into a
subspace for better discrimination. As discussed in Section I,
there are two general forms of multilinear projection: the TTP
[2], [10], [15] and the TVP [18], [19]. Since the projections
obtained by TTP can be viewed as a set of interdependent
projections [17], the features extracted through TTP are likely
to be correlated rather than uncorrelated. Therefore, we choose
to develop the UMLDA by determining a subspace of tensor
objects through TVP rather than TTP.

The TVP projects a tensor to a vector and it can be viewed
as multiple projections from a tensor to a scalar, as illustrated
in Fig. 1(b), where a TVP of a tensor A € R10*8*6t0a P x 1
vector consists of P projections from A to a scalar. Thus, the
projection from a tensor to a scalar is considered first. A tensor
X € RIxI2xXIn can be projected to a point y through N

unit projection vectors {u(l)T, , u®’ L u™M Y asy = X%
u®’ X9 u®@’ ... X N u™’ , ||u(”)|| =1forn=1,...,N,
where || - || is the Euclidean norm for vectors. It can be written

in the scalar product (2) asy = (X, uMou®o...ou™). De-
note = uMou®o--.ou™, then we have y = (X, U). We
name this multilinear projection {u(l)T , u(2)T7 e ,u(N)T} as

an elementary multilinear projection (EMP), which is the pro-
jection of a tensor on a single line (resulting a scalar) and it
consists of one projection vector in each mode. Fig. 1(a) illus-
trates an EMP of a tensor A € R9%8X6_ Ag pointed out in
[17], an EMP can be viewed as a constrained linear projection
since (X, U) = (vec(X), vec(Ud)) = [vec(U)]" vec(X), where
vec(A) denotes the vectorized representation of the tensor A
[34].
Thus, the TVP of a tensor object X’ to a vector y € R”
in a P-dimensional vector space consists of P EMPs
m* @ ™ — :
{wp’ ,uy”’ ,...,up’ }, p = 1,...,P, which can be

’

T
written concisely as {u1<,") ,n = 1,...,N} . The TVP
T
from X to y is then written as y = X x)_,; {uén) ,no=
1,...,N }5:1, where the pth component of y is obtained from

T T T
the pth EMP as y(p) = X x1 u,(ol) X2 u,()2) XN u,(DN)

III. UNCORRELATED MLDA WITH REGULARIZATION FOR
TENSOR OBJECT RECOGNITION

This section proposes the UMLDA-based tensor object
recognition system, which is a typical recognition system as
shown in Fig. 2. The normalization step is a standard processing
to ensure all input tensors having the same size [10]. At the core
of this system is the UMLDA framework for feature extraction
to be presented in this section: the UMLDA with regularization
(R-UMLDA). The R-UMLDA produces vector features that
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Original - Sta‘?g:;(cj)lrz o R-UMLDA F\/e:égre .
T Normalization »> feature »> Classifier ~|—» Tensor
ensor extraction Class label

Fig. 2. UMLDA-based tensor object recognition.

can be fed into standard classifiers for classification. Besides the
description of the fundamental units in Fig. 2, implementation
issues, computational aspects, and the connections with other
algorithms are discussed in this section as well.

A. The Uncorrelated Multilinear Discriminant Analysis
With Regularization (R-UMLDA)

In the presentation, for the convenience of discussion, the
training samples are assumed to be zero-mean? so that the con-
straint of uncorrelated features is the same as orthogonal fea-
tures.3 Before formally stating the objective of the UMLDA, a
number of definitions are needed.

The classical FDC in LDA [32] is defined as the scatter ratio
for vector samples. Here, we adapt it to scalar samples, which
can be viewed as the degenerated version. The pth projected
(scalar) features are {y,,,,m = 1,..., M}, where M is the
number of training samples and y,,,, is the projection of the mth

sample X,,, by the pth EMP {ul(on)T7n =1,....,N}: ym, =

T
X xN_| {ug,") , n = 1,...,N}. Their corresponding be-
tween-class scatter S%p and the within-class scatter S%,'Vp are

c M
S]);p = ZNC(ng - gp)2 S‘):Vp = Z(ym'p - g”mp)Z S
c=1 m=1

where C' is the number of classes, N, is the number of samples
for class ¢, c,, is the class label for the mth training sample,
Yp = (1/M) Zm Ym, = 0, and Ye, = (1/NC) Zm,cm=(~, Ym, -
Thus, the FDC for the pth scalar samples is Fy = Sy /S}; .
In addition, let g, denote the pth coordinate vector, with its mth
component g, (1) = Ym, .

A formal definition of the multilinear feature extraction
problem to be solved in UMLDA is then given in the following.

A set of M training tensor object samples { X1, Xz, ..., Xar}
(with zero-mean) is available for training. Each tensor object
X, € RIVI2XXIN agqumes values in the tensor space
R QR ... @R/~ where I, is the n-mode dimension of
the tensor and ) denotes the Kronecker product. The objective
of the UMLDA is to find a TVP, which consists of P EMPs
{uén) e R n=1,... N}, mapping from the original
tensor space Rt @ R - .- @ R~ into a vector subspace RY
(with P < [T_, I,,)

T
Ym = Xm X1]1V:1 {u]()n) y = 17"'7N}]1)3:17

m=1,....M (4

2When the training sample mean is not zero, it can be subtracted to make the
training samples to be zero-mean.

3Let x and y be vector observations of the variables  and y. Then, x and y
are orthogonal iff x”y = 0, and x and y are uncorrelated iff (x — )7 (y —
y) = 0, where & and § are the means of x and y, respectively [35]. Thus, two
zero-mean (centered) vectors are uncorrelated when they are orthogonal [36].

such that the FDC Fg’ is maximized in each EMP direction,
subject to the constraint that the P coordinate vectors {g, €
RM.p =1,..., P} are uncorrelated.

In other words, the UMLDA objective is to determine a set of
P EMPs {u]()")T ,n=1,..., N}, that maximize the scatter
ratio while producing features with zero correlation. Thus, the
objective function for the pth EMP is

{uz()n)T7 n=1,...,N} = argmax FY
gle,

subject to ———— =
gl ll&qll

5pq7 pqulv"wP (5)

where 0,, is the Kronecker delta (defined as 1 for p = ¢ and as
0 otherwise). To solve this problem, we follow the successive
determination approach in the derivation of the ULDA in [28].
The P EMPs {uz()")T, n =1,...,N}" are determined se-
quentially (one by one) in P steps, with the pth step obtaining
the pth EMP. This stepwise process proceeds as follows.

T
Step 1: Determine the first EMP {u{™ , n =1,..., N} by
maximizing F} without any constraint.

T
Step 2: Determine the second EMP { uén) , n=
maximizing F subject to the constraint that gZ'g; = 0.

Step 3: Determine the third EMP {u:(,,")'r? n=1,...,N} by

maximizing F subject to the constraint that g1 g; = 0 and
T _

g3g2 = 0.

Step p (p = 4,..., P): Determine the pth EMP

{u{™" | n=1,..., N} by maximizing FY subject to the

constraint that gg, = 0forg =1,...,p— 1.

In the following, the algorithm to compute these EMPs is
presented in detail, which is summarized in the pseudocode
in Fig. 3. In the figure, the stepwise process described above
corresponds to the loop indexed by‘ p.

To solve for the pth EMP {uz(,n)l ,n=1,..., N}, there are
N sets of parameters corresponding to N projection vectors to
be determined, ug), uﬁz), ...up ’,one in each mode. It is de-
sirable to determine these N sets of parameters (NN projection
vectors) in all modes simultaneously so that FY is (globally)
maximized, subject to the zero-correlation constraint. Unfortu-
nately, this is a rather complicated nonlinear problem without
an existing optimal solution, except when N = 1, which is
the classical linear case where only one projection vector is
to be solved. Therefore, we derive a suboptimal solution in-
stead by following the principle of the alternating least square
(ALS) algorithm [37]-[39], where a multilinear (least-square)
optimization problem is reduced into smaller conditional sub-
problems that can be solved through simple established methods
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., M} with class labels ¢ € RM, the desired

feature vector length P, the regularization parameter v, the maximum number of iterations K and a small number

Input: A set of zero-mean tensor samples {X,, € RIVX2%XIN iy — 1
e for testing convergence.
T
Output: The P EMPs {u{” n=

R-UMLDA algorithm:

For p =1 : P (step p: determine the pth EMPs)

If p > 1, calculate the coordinate vector gp—1: gp—1(m) =

e Forn =1,..., N, initialize u,, ) € R,

e Fork=1:K

- Forn=1: N

O8

* Calculate y ymp X X1Up ;) -

* Calculate R(") S(n), and S(") Set u'™

- Xn—1Up,

SN }5:1 that best separate classes in the projected space.

)T
p—1 *

7T (2)

Am X1u,2; X2u,”; ... XN U

n— nt1 N)T /
(n—1)T ><n+1u§,(,C 1)) . XNu(p(k)ﬁl),for m=1,...,M.

~ —1 ~
by to be the (unit) eigenvector of <S§,§i> R;")Sg;)

associated with the largest eigenvalue.

- If k= K or dist (uﬁ,’(‘f) u§,'(‘,2 1>) < ¢ for all n, set ul™ = ul” for all n, break.

« Output {u{™}. Go the step p+ 1 if p < P. Stop if p = P.

Fig. 3. Pseudocode implementation of the R-UMLDA algorithm for feature extraction from tensor objects.

employed in the linear case. Thus, for each EMP to be deter-
mined, the parameters of the projection vector u,() ") for each
mode n* are estimated one by one separately, conditioned on
{u("), n # n*}, the parameter values of the projection vectors
for the other modes.4 Thus, by fixing Eu}") , n # n*}, anew ob-
jective function depending only on u,," ) is formulated and this
conditional subproblem is linear and much simpler. The param-
eter estimations for each mode are obtained in this way sequen-
tially (the n loop) and iteratively (the k£ loop) until a stopping
criterion is met. We name this iterative method the alternating
projection method (APM). It corresponds to the loop indexed
by k in Fig. 3, and in each iteration k, the loop indexed by 7 in
Fig. 3 consists of the N conditional subproblems.

To solve for u,() " in the n* -mode, assuming that { up , n#
n*} is given, the tensor samples are projected in these (N — 1)
modes {n # n*} first to obtain (vectors)

*® T T
NST:LP):Xm Xlug,l) cee X 1u(n _1)
. o
xn*ﬂu;” T xyulMT (6)
Sn(ffp) € R’»*. This conditional subproblem then be-
comes to determine u;f,n ) that projects the vector samples
{ymp ,m =1,..., M} onto a line so that the scatter ratio is

maximized, subject to the zero-correlation constraint. This is
a (linear and simpler) ULDA problem with the input samples
{yﬁ,’;p)? m = 1,...,M}. The corresponding between-class

scatter matrix Sg:) and the (regularized) within-class scatter

matrix é%;,}j are then defined as

8 = ZN ( () _ I()n)) (%Z*)_;}()n*))T 7

4It should be noted that this conditioning implies that the estimation of the
parameters in one mode is dependent on the parameters in all the other modes.

500) (s -50)

)1, (8)

whete 3 = (1/No) e, o 900, - 33 = (1M S,
yf{;p) = 0,y > 0is aregularization parameter, Iy . is an iden-

~ * M 4
S =0 (9 -
1

m=

+ Y- )\max(s

tity matrix of size I~ X Ip,~, and /\max(égﬁw) is the maximum
eigenvalue of Sgﬁ ), which is the within-class scatter matrix for
the n-mode vectors of the training samples, defined as

M

=Y Kty = Xepn) (Kingney = Xy n)

m=1
) ©
where X(,,+) is the n*-mode unfolded matrix of the class mean
tensor X, = (1/Nc) >, . _. X In the following, the moti-
vation for introducing the regularization factor is explained.

In the targeted biometrics applications (and many other ap-
plications as well), the dimensionality of the input data is very
high while at the same time, the number of training samples for
each class is often too small to represent the true characteris-
tics of their classes, resulting in the well-known SSS problem
[30]. Furthermore, our empirical study of the iterative UMLDA
algorithm (i.e., v = 0) under the SSS scenario indicates that
the iterations tend to minimize the within-class scatter towards
zero in order to maximize the scatter ratio (since the scatter ratio
reaches maximum of infinity when the within-class scatter is
zero and the between-class scatter is nonzero). However, the es-
timated within-class scatter on the training data is usually much
smaller than the real within-class scatter, due to limited number
of samples for each class. Therefore, regularization [40], which
has been used for combatting the singularity problem5 in LDA-
based algorithms under the SSS scenario [30], [41], is adopted

S

SWhile the numerical singularity problem is common for LDA-based algo-
rithms, as pointed out in [2], this is not the case for MLDA. Therefore, the moti-
vation of using regularization here is different from the linear case in this aspect.
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here to improve the generalization capability of UMLDA under
the SSS scenario, leading to the R-UMLDA. The regularization
term is introduced in (8) so that during the iteration, less focus
is put on shrinking the within-class scatter. Moreover, the reg-
ularization introduced is adaptive since -y is the only regular-
ization parameter and the regularization term in the n*-mode
is scaled by )\max(égﬁ )), which is an approximate estimate of
the n*-mode within-class scatter in the training data. The basic
UMLDA is obtained by setting v = 0.

With (7) and (8), we are ready to solve the P EMPs.

1, the u{"" that maximizes the FDC uﬁ"*)ng”:)

ul" /ul” Sgﬁf)ugn*) in the projected space is obtained

For p =

as the unit eigenvector of (S&:))*lggf) associated with
the largest eigenvalue for a nonsingular Sg;l) Next, we
show how to determine the pth (p > 1) EMP given the
first (p — 1) EMPs. Given the first (p — 1) EMPs, the pth
EMP aims to maximize the scatter ratio Fg’ , subject to the
constraint that features projected by the pth EMP is uncor-
related with those projected by the first (p — 1) EMPs. Let

Yén*) € RIn**M pe a matrix with its mth column to be y,&’ZP s
Ca v _pe(nt) S(n?) <(n") :
ie, Y, ' = [Y1p Y3, e 3; M, ] then the pth coordinate
vector is obtained as g, = Y" ) u" ). The constraint that g,
is uncorrelated with {g,,¢ = 1,...,p — 1} can be written as
T~ (n*
g g, =u) Y\ g, =0,

(10)

qg=1,...,p—1.

Thus, uz()n*) (p > 1) can be determined by solving the following
constrained optimization problem:

u]()n*)ng;*)u;n*)

(n") —
u = argmax ——vr =/ ; ”
P u]()n ) S%;p)uI()n )

subject to ué"*)TYﬁn*)gq =0, g=1,....,p—1. (11)

The solution is given by the following theorem for nonsin-
gular S<T§p).

Theorem 1: When gg?p) is nonsingular, the solution to the
problem (11) is the (unit-length) generalized eigenvector corre-
sponding to the largest generalized eigenvalue of the following
generalized eigenvalue problem:

Rg,n*>sg;>u =S u (12)
where
R =1; . - Y")G,_,
< (G veog, )
x GI_ Y s (13)
G,_i=[g1 8 -g1] RV, (14)

Proof: The proof of Theorem 1 is given in Appendix I. ®

By setting Rgn*) = I;,. and from Theorem 1, we have

a unified solution for R-UMLDA when ngp) is nonsingular:

forp=1,...,P, u,()n*) is obtained as the unit eigenvector of
(SE;';))_IRI(,TL* ) Sgp) associated with the largest eigenvalue.

Next, we will describe the classification of R-UMLDA fea-
tures and then give detailed discussions on implementation is-
sues and connections to other algorithms.

B. Classification of R-UMLDA Features

Despite working directly on tensorial data, the proposed
R-UMLDA algorithm is a feature extraction algorithm that
produces feature vectors such as traditional linear algorithms
(through TVP), as in traditional linear algorithms. For recogni-
tion tasks, the features extracted are to be fed into a classifier
to get the class label, as shown in Fig. 2. In this work, the
feature vectors obtained through R-UMLDA are fed into the
nearest-neighbor classifier (NNC) with the Euclidean distance
measure for classification. It should be noted at this point that,
since this paper focuses on multilinear feature extraction, a
simple classifier is preferred so that the recognition performance
is mainly contributed by the feature extraction algorithms rather
than the classifier. The classification accuracy of the proposed
method (and other methods compared in Section V) is expected
to improve if a more sophisticated classifier such as the support
vector machine (SVM) is used instead of the NNC. However,
such an experiment is out of the scope of this paper.

To classify a test sample X using NNC, X is first projected
to a feature vector y through the TVP obtained by R-UMLDA:
y =& xN_, {ué")T./n =1,...,N}I_,. The nearest neighbor
is then found as m* = argmin,, ||y — ym||, where y,, is the
feature vector for the mth training sample. The class label of the
m*th training sample c¢,,,- is then assigned to the test sample X'.

C. Initialization, Projection Order, Termination,
and Convergence

In this section, we discuss the various implementation issues
of R-UMLDA, in the order of the algorithm flow in Fig. 3: ini-
tialization, projection order, termination, and convergence.

As the determination of each EMP {u;f,n)7 n=1,...,N}is
an iterative procedure due to the nature of R-UMLDA, like in
other multilinear learning algorithms [1], [2], [15], [42]-[44],
initial estimations for the projection vectors {u;,"’} are neces-
sary. However, there is no guidance from either the algorithm
or the data on the best initialization that could result in the best
separation of the classes in the feature space. Thus, the determi-
nation of the optimal initialization in R-UMLDA is still an open
problem, as in most iterative algorithms including other mul-
tilinear learning algorithms [2], [15], [18], [19]. In this work,
we empirically study two simple and commonly used initializa-
tion methods [17]: uniform initialization and random initializa-
tion [18], [19], which do not depend on the data. In the uni-
form initialization, all n-mode projection vectors are initialized
to have unit length and the same value along the I,, dimensions
in n-mode, which is equivalent to the all ones vector 1 with
proper normalization. In random initialization, each element of
the n-mode projection vectors is drawn from a zero-mean uni-
form distribution between [—0.5, 0.5] and the initialized projec-
tion vectors are normalized to have unit length. Our empirical
studies in Section V-C indicate that the results of R-UMLDA
are affected by initialization, and the uniform initialization gives
better results.
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The mode ordering (the innermost for loop in Fig. 3, indexed
by n) in computing the projection vectors, named the projection
order in this work, affects the solution as well. Similar to initial-
ization, there is no way to determine the optimal projection order
and it is considered to be an open problem too. Empirical studies
on the effects of the projection order indicate that with all the
other algorithm settings fixed, altering the projection order does
result in some performance differences, but there is no guidance
from either the data or the algorithm on what projection order is
the best in the iteration. Therefore, we have no preference on a
particular projection order and in practice, we solve the projec-
tion vectors sequentially (from 1-mode to N-mode), as in other
multilinear algorithms [1], [2], [15], [19].

Remark 1: Although we are not able to determine the optimal
initialization and the optimal projection order, the aggregation
scheme suggested in Section IV reduces the significance of their
optimal determination.

As seen from Fig. 3, the termination criterion can be simply
set to a maximum number of iterations K or it can be set
by examining the convergence of the projection vectors:
dist(u,()?z) u,(m) ) < € where € is a user-defined small
number threshold (e.g., e = 107?), and this distance is defined
as
dist ( (n) () )

P(k)’ "P(k—1)

= min (||u " 4u p(A 1)|| ||

P(A 1) H) (15)
since eigenvectors are unique up to sign. As to be shown in
Section V-C, the recognition performance increases slowly after
the first few iterations. Therefore, the iteration can be terminated
by setting K in practice for convenience, especially when com-
putational cost is a concern.

D. Computational Aspects of UMLDA

Next, the computational complexity and memory require-
ments of UMLDA are analyzed, in a similar way as in [10].
In the analysis it is assumed that I; = [, =
(T2, 1)/ = T for simplicity.

From a computational complexity point of view, the most de-
manding steps involve the calculations of the projection y( ")

, Sgﬁz, and R{™, and the determina-

= Iy =

the computation of st X
tion of the leading eigenvector of (Sggiz)_lR,()n) ggﬁ. The com-
plexity of calculating y,(w 3 form=1,...,M, ég‘j, and Sg?g
are in order of O(M - 22;2 I"),0(C - I?),and O(M - I?),

respectively. The computation of RI()n is in order of

OI-M-(p—1)+I*+2-(p—1)
P+(p-1°+2-1-(p—1)%
=0(LP+(p—-1)-[[ - M+2-I”+(p—1)°

+2-1-(p—1)]). (16)

Last, the computation of (S(")) 'R ")S("p) and its eigende-
composition® can be completed in O(2 - I*) and O(I?), re-

SUMLDA needs only the largest eigenvalue and the corresponding eigen-
vector, so more efficient computational methods may be applied in practice.
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spectively. Therefore, the overall computational complexity per
mode n for a single iteration & during step p is

(MZI” +(C+MIP+(p-1)
[[-M+2°+(p—-1)"+2I(p—1)] + 413). (17)

With respect to the memory requirement, as in MPCA
[10], the respective computation can be done incrementally by
reading X, sequentially. Hence, the memory needed for the
UMLDA algorithm can be as low as O(I?) except for N = 1.
It should be noted at this point that sequential reading may lead
to higher input/output (I/O) cost.

From the reported analysis above, it can be seen that as a
sequential iterative solution, UMLDA may result in a higher
computational and I/O cost. Nonetheless, since the operations
in solving the UMLDA projection are usually performed offline,
only during the training phase, additional computational and I/O
cost due to iterations and sequential processing do not constitute
a comparative disadvantage. During testing, the extraction (pro-
jection) of features from a test sample is a simple linear opera-
tion with a computational complexity similar to linear subspace
projection algorithms.

E. Connections to DATER, GTDA, TRIDA, and LDA

Detailed discussions on the relationships between UMLDA,
DATER, GTDA, TR1DA, and LDA are presented in [17], which
are summarized in Appendix II for completeness. Briefly, the
UMLDA is an MLDA variant that maximizes the scatter ratio
through a TVP. LDA is the special case of UMLDA with N =
1. DATER is an MLDA variant also based on scatter ratio but
it solves a TTP rather than TVP. GTDA is an MLDA variant
that maximizes the scatter difference through a TTP. TR1DA
also solves for TVP as UMLDA, however, it maximizes scatter
difference and it is a heuristic approach with residue calculation,
originally proposed for tensor approximation.

IV. AGGREGATION OF R-UMLDA RECOGNIZERS

This section proposes the aggregation of a number of differ-
ently initialized and regularized UMLDA recognizers for en-
hanced performance, which is motivated from two properties of
the basic R-UMLDA recognizer in Fig. 2. On one hand, as to
be shown in Section V-C, the number of useful discriminative
features that can be extracted by a single R-UMLDA is limited,
partly due to the fact that EMPs to be solved in R-UMLDA cor-
respond to very constrained situations in the linear case. On the
other hand, since the R-UMLDA is affected by initialization and
regularization, which cannot be optimally determined, different
initialization or regularization could result in different discrim-
inative features (also see Section V-C). From the generaliza-
tion theory explaining the success of random subspace method
[45], bagging and boosting [46], [47], [48], the sensitivity of
the R-UMLDA to initialization and regularization suggests that
R-UMLDA is not a very stable learner (feature extractor) and
it is good for ensemble-based learning. Therefore, we propose
the aggregation of several differently initialized and regularized
UMLDA feature extractors to get the regularized UMLDA with
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Input:

A set of zero-mean tensor samples { X, € RIxTaXeeXIN oy — 1 M} with class labels ¢ € R, a test tensor

sample X, the desired feature vector length P, the R-UMLDA feature extractor (Fig. 3), the maximum number of

iterations K, the number of R-UMLDA to be aggregated A.

Output:The class label for X'.
R-UMLDA-A algorithm:

Step 1. Feature extraction

e Fora=1:A

— Obtain the ath TVP {ul" n = 1,..

. N}5=1(a) from the ath R-UMLDA (Fig. 3) with the input:

{Xm}, P, K, Ya, using random or uniform initialization.

T
- Project {Xm} and X to {ym,,} and y(a), respectively, using {u,s,") ,n=1, ...,N},I,D:l(a).

Step 2. Aggregation at the matching score level for classification

e Fora=1:A
- Forec=1:C

* Obtain the nearest-neighbor distance d(X, ¢, a).

— Normalize d(X, ¢, a) to [0,1] to get d~(X,c, a).

« Obtain the aggregated distance d(X, ¢).

o Output ¢* = arg min. d(X, ¢) as the class label for the test sample.

Fig. 4.

aggregation (R-UMLDA-A) recognition system so that multiple
R-UMLDA recognizers can work together to achieve better per-
formance on tensor object recognition.

Remark 2: Different projection order also could result in dif-
ferent features so R-UMLDA with different projection orders
could be aggregated as well. However, since the effects of dif-
ferent projection orders are similar to those of different initial-
izations and the number of possible projection orders (which
is N!) is much less than the number of possible initializations
(which is infinite), we fix the projection order and vary the ini-
tialization and regularization only in this work.

There are various ways to combine (or fuse) several extracted
features, including the feature level fusion [49], fusion at the
matching score level [50], [51], and more advanced ensemble-
based learning such as boosting [46], [52], [53]. For similar ar-
gument of the choice of a simple classifier, the simple sum rule
in combining matching scores is used in this work since the
focus here is on the feature extraction. Although more sophisti-
cated method such as boosting is expected to achieve better re-
sults, the investigation of alternative combination methods, such
as other combination rules and feature-level fusion, are beyond
the scope of this paper and will be the topic of a forthcoming
paper.

Since high diversity of the learners to be combined is pre-
ferred in ensemble-based learning [52], we choose to use both
uniform and random initializations in R-UMLDA-A for more
diversity. Thus, although we are not able to determine the best
initialization, we aggregate several R-UMLDA with different
initializations to make complementary discriminative features
working together to separate classes better. Furthermore, to
introduce even more diversity and alleviate the problem of
regularization parameter selection at the same time, we propose
to sample the regularization parameter -y, from an interval

Pseudocode implementation of the R-UMLDA-A algorithm for tensor object recognition.

[10~7,1072], which is empirically chosen to cover a wide
range of vy, uniformly in log scale so that each feature extractor
is differently regularized, where ¢ = 1,..., A is the index of
the individual R-UMLDA feature extractor and A is the number
of R-UMLDA feature extractors to be aggregated.

Fig. 4 provides the pseudocode implementation for the
R-UMLDA-A for tensor object recognition. The input training
samples {X,,} are fed into A differently initialized and
regularized UMLDA feature extractors described in Fig. 3
with parameters P, K, and -y, to obtain a set of A TVPs

{ul()n)l, n = 1,...,N}§:1(n), a = 1,...,A. The training
samples {X,,, } are then projected to R-UMLDA feature vectors
{¥m.,} using the obtained TVPs. To classify a test sample
X, it is projected to A feature vectors {y(,} using the A
TVPs first. Next, for the ath R-UMLDA feature extractor, we
calculate the nearest-neighbor distance of the test sample X to
each candidate class c as

d(X,c,a) = (18)

I?iic HY(a) - ym(a) ||

m,

The range of d(X, ¢, a) is then matched to the interval [0, 1] as

= d(X,c,a) —min.d(X,c,a)
X,c,a)= — ; .
X, c,a) max, d(X,¢,a) — min. d(X, ¢, a)

(19)

Finally, the aggregated nearest-neighbor distance is obtained
employing the simple sum rule as

A
d(X,c) =Y d(X,c,a) (20)
a=1

*

and the test sample A is assigned the label: ¢ =
arg min. d(X, ¢).
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TABLE II

CHARACTERISTICS OF THE GAIT DATA FROM THE USF GAIT CHALLENGE DATA SET

Gait data set Gallery(GAR) | Probe A(GAL) | Probe B(GBR) | Probe C(GBL)
Number of sequences (samples) 71 (731) 71 (727) 41 (423) 41 (420)
Difference from the gallery - View Shoe Shoe, view
TABLE 1II
LIST OF ALGORITHMS TO BE COMPARED

Acronym Full name Linear/Multilinear ~ Reference
Bayes Maximum likelihood version of the Bayesian solution Linear [56]
LDA linear discriminant analysis Linear [32]
ULDA uncorrelated linear discriminant analysis Linear [33]
R-JD-LDA  regularized version of the revised direct LDA Linear [30], [57]
MPCA multilinear principal component analysis Multilinear [10]
DATER discriminant analysis with tensor representation Multilinear 2]
GTDA general tensor discriminant analysis Multilinear [15]
TRIDA tensor rank-one discriminant analysis Multilinear [18], [19]

V. EXPERIMENTAL EVALUATION

In this section, a number of experiments are carried out on
two biometric applications in support of the following two
objectives:

1) investigate the various properties of the R-UMLDA

algorithm;

2) evaluate the R-UMLDA and R-UMLDA-A algorithms on
two tensor object recognition problems, face recognition
(FR) and gait recognition (GR), by comparing their per-
formance with that of competing multilinear learning al-
gorithms as well as linear learning algorithms.

Before presenting the experimental results, the experimental
data and algorithms to be compared are described first.

A. Experimental Data

Three popular public databases are used in the experiments:
the Pose, Illumination, and Expression (PIE) database from
Carnegie Mellon University (CMU) [54], the Facial Recogni-
tion Technology (FERET) database [55] and the HumanID gait
challenge data set version 1.7 (V1.7) from the University of
South Florida (USF).

The CMU PIE database contains 68 individuals with face im-
ages captured under varying pose, illumination, and expression.
We choose the seven poses (C05, C07, C09, C27, C29, C37,
C11) with at most 45° of pose variation, under the 21 illumina-
tion conditions (02 to 22). Thus, there are about 147 (7 x 21)
samples per subject and there are a total number of 9987 face
images (with nine faces missing). This face database has a large
number of samples for each subject, therefore, it is used to study
the properties of the proposed algorithm and the FR perfor-
mance under varying number of training samples per subject,
denoted by L.

The FERET database is a standard testing database for FR
performance evaluation, including 14 126 images from 1199 in-
dividuals with views ranging from frontal to left and right pro-
files. The common practice is to use portions of the database

Authorized licensed use limited to: The University of Toronto. Downloaded on July 28

for specific studies. Here, we select a subset composed of those
subjects with each subject having at least six images with at
most 45° of pose variation, resulting in 2803 face images from
335 subjects. The studies on the FR performance under varying
number of subjects C' are carried out on this face database since
there are a large number of subjects available. Face images from
the PIE and FERET databases are manually aligned, cropped,
and normalized to 32 x 32 pixels, with 256 gray levels per pixel.

The USF gait challenge data set V1.7 consists of 452 se-
quences from 74 subjects walking in elliptical paths in front of
the camera, with two viewpoints (left or right), two shoe types
(A or B), and two surface types (grass or concrete). Here, we
choose those sequences on grass surface only: the gallery set,
and the probe sets A, B, and C, with detailed information listed
in Table II. The capturing condition for each set is summarized
in the parentheses after the set name in the table, where G, A,
B, L, and R stand for grass surface, shoe type A, shoe type B,
left view, and right view, respectively. Each set has only one
sequence for a subject. Subjects are unique in the gallery and
each probe set and there are no common sequences between
the gallery set and any of the probe sets. In addition, all the
probe sets are distinct. These gait data sets are employed to
demonstrate the performance on third-order tensors since gait
silhouette sequences are naturally 3-D data [10]. We follow the
procedures in [10] to get gait samples from gait silhouette se-
quences and each gait sample is resized to a third-order tensor
of 32 x 22 x 10. The number of samples for each set is indi-
cated in the parentheses following the number of sequences in
Table II.

B. Performance Comparison Design

In the FR and GR experiments, we compare the performance
of the proposed algorithms against four multilinear learning al-
gorithms and four linear learning algorithms listed in Table IIL,7
where the LDA algorithm takes the Fisherface approach [32].

"Note that the ULDA compared here is different from the ULDA in [28].
Therefore, it is different from the classical LDA.
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Fig. 5. Illustration of the effects of initialization and regularization on recognition performance. Uniform initialization with various s for (a) L = 2 and (b) L =
20; random initialization with various s averaged over 20 repetitions for (c) L = 2 and (d) L = 20; six repetitions of random initialization with v = 10—2 for
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For classification of extracted features, we use the NNC with
Euclidean distance measure except for the Bayesian solution,
which uses the NNC with the Mahalanobis distance [56]. The
MPCA, DATER, and GTDA algorithms produce features in
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tensor representation, which cannot be handled directly by the
selected classifier. Since from [17], the commonly used tensor
distance measure, the Frobenius norm, is equivalent to the Eu-
clidean distance between vectorized representations, the tensor
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(k—1) ) for various s over 50 iterations for (a) p = 1 and (b) p = 8; the CRRs

for various K's (the maximum number of iterations) for (c) ¥ = 0 and (d) v = 103,

features from MPCA, DATER, and GTDA are rearranged to
vectors for direct comparison. They obtain the highest dimen-
sion projection (P, = I, forn = 1,..., N) first and then the
TTP is viewed as [[)_, I,, EMPs. The discriminability of each
such EMP is calculated on the training set and the EMPs are
arranged in descending discriminability so that a feature vector
is obtained, as in [10].

In the experiments, for fair comparison and computational
concerns, we set the number of iterations in the four MLDA al-
gorithms to be 10, unless otherwise stated. For MPCA, DATER,
GTDA, and TRIDA, up to 600 features were tested. The max-
imum number of features tested for LDA and ULDA is C' — 1.
For the Bayesian solution, the maximum number of features
tested is min{M — C,600}. For the TRI1DA algorithm, we
tested several values of the tuning parameter ¢ for each L, and
the best one for each L was used: ( = 2 for L < 7, ( = 0.8 for
8 < L <15, = 0.6 for L > 16. For R-JD-LDA, the default
maximum number (= 0.8 - (C' — 1)) of features and a regular-
ization parameter of 0.001 originally suggested by the authors
of [30] and [57] are used.

For the recognition experiments of only one R-UMLDA,
uniform initialization is used and we empirically set v = 1073,
with up to 30 features tested. For R-UMLDA-A, up to 20 dif-

ferently initialized and regularized versions of UMLDA feature
extractors are combined with each producing up to 30 features,
also resulting in a total number of 600 features. Uniform
initialization is used for a = 1, 5,9, 13, 17 with corresponding
Yo = 1072,1073,107%,107°,1075, and random initialization
is used for the rest values1 of a. In computing the matrix inverse
of (Gg_l?l()n‘ ) ggﬁp) Y{")G,_1) in (13), a small term
(k - I,_1) is added, where k = 1073, in order to get better
conditioned matrix for the inverse computation.

The recognition performance is measured in correct recogni-
tion rate (CRR). The best recognition results reported are ob-
tained by varying the number of features used and the number
of R-UMLDA recognizers aggregated for the R-UMLDA-A al-
gorithm. For all the other algorithms, the best results are ob-
tained by varying the number of features used. For fair compar-
ison, there is no further fine tuning of other parameters (such
as the regularization parameter) for optimal performance on the
testing data, including the proposed method. For better viewing,
the top two recognition results in each experiment are shown in
bold in tables. In the comparative evaluation of recognition per-
formance in Figs. 8-10, for the horizontal axis which indicates
the number of features used for recognition, log scale has been
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used in order to highlight the comparative performance in low-
dimensional subspaces while showcasing the best overall per-
formance achieved.

C. Empirical Studies of the R-UMLDA Properties
on the PIE Database

First, the following properties of R-UMLDA are studied on
the PIE database: the effects of initialization and regulariza-
tion, the convergence, the number of useful features, and the
effects of aggregation. These experiments are performed on one
random split of the database into training and testing samples.

1) The Effects of Initialization and Regularization: Fig. 5 il-
lustrates the effects of initialization and regularization on two
FR experiments: one with L = 2 and one with L. = 20, cor-
responding to the SSS scenario and the scenario when a large
number of samples (per subject) are available for training. The
CRRs for various s are depicted in Fig. 5(a) (L = 2) and
Fig.5(b) (L = 20) for the uniform initialization, and in Fig. 5(c)
(L = 2) and Fig.5(d) (L = 20) for the random initializa-
tion (averaged over 20 repeated trials). Fig. 5(e) and (f) shows
the plots for the CRRs from six repetitions of the random ini-
tialization with v = 1073, They demonstrate that the recogni-
tion results are affected by initialization and different initializa-
tion results in different results. By comparing Fig. 5(f) against
Fig. 5(e), it can be seen that the sensitivity to initialization is
smaller for a larger L. Furthermore, by comparing Fig. 5(a)
against Fig. 5(c) and Fig. 5(b) against Fig. 5(d), we observe that
the uniform initialization outperforms the random initialization
for both a small L and a large L. Therefore, we use the uni-
form initialization when only one R-UMLDA feature extractor
is employed. In the following discussions, we show the con-
vergence and the number of useful features using the uniform
initialization.

In addition, the effects of regularization are also observed
in Fig. 5(a)—(d). For a small L, UMLDA with a strong regu-
larization (larger ) can outperform that without regularization
(y = 0), while for a large L, a too strong regularization may re-
sults in poorer performance, as observed in other regularization
algorithms [30].

2) Convergence: The convergence is illustrated in Fig. 6.
Fig. 6(a) and (b) depicts two examples of the evolution of

Number of features used

(b)

Demonstration of (a) the recognition performance for L = 5 as P increases for various s, and (b) the effectiveness of aggregation.

dist(ul()%,)c) , ul(,},)c_n) for p = 1 and p = 8, with various ~s, up

to 50 iterations. As seen in the figure, in the worst scenarios,
the projection vector converges around & = 15 for p = 1 and
around k£ = 30 for p = 8. In addition, a stronger regulariza-
tion (larger <) is more likely to result in faster convergence.
Furthermore, the recognition performance is examined for
various K's, as shown in Fig. 6(c) and (d) with L. = 5 for
v = 0and v = 1073, respectively. It indicates that the first
few iterations improve the recognition performance the most,
and more iterations afterwards give slow improvement in the
recognition rate, especially for a larger . Therefore, we set K
to a fixed number K = 10 to terminate the iteration in practice.
When computational efficiency is important, K can be further
reduced to improve processing speed, while sacrificing some
recognition performance.

3) The Number of Useful Features and the Effects of Aggrega-
tion: The R-UMLDA is limited in the number of extracted fea-
tures (P) useful for recognition, as depicted in Fig. 7(a), where
the CRRs are shown for up to 60 features for L = 5 and with
various ys. In particular, the first few features are very powerful,
while beyond a certain number (e.g., 20), the performance varies
very slowly with an increased P. Fortunately, from the study of
the effects of initialization and regularization, we find that dif-
ferent initialization or regularization produces different results
(Fig. 5). Thus, the proposed aggregation scheme makes use of
this property and combines differently initialized and regular-
ized R-UMLDA recognizers to achieve enhanced results. At the
same time, the problem of regularization parameter selection is
alleviated. The results of aggregation are shown in Fig. 7(b) for
L = 5 and up to 20 R-UMLDA recognizers to be combined, by
the R-UMLDA-A described in Section V-B. The figure demon-
strates that the aggregation is an effective procedure and there
are indeed complementary discriminative information from dif-
ferently initialized and regularized R-UMLDA recognizers.

D. Face Recognition Results

In FR experiments, face images are input directly as second-
order tensors to the multilinear algorithms, while for the linear
algorithms, they are vectorized to 1024 x 1 vectors as input. For
each subject in an FR experiment, L samples are randomly se-
lected for training and the rest are used for testing. We report
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Fig. 8. Face recognition results on the PIE database: correct recognition rate against the number of features used for (a) L = 2, (b) L = 5, (¢) L = 20, and

(L = 40.

the results, including the mean and standard deviation (Std), av-
eraged over 20 random splits.

1) FR Results on the PIE Database: In order to study
the recognition performance with different Ls, we per-
form nine FR experiments on the PIE database with
L = 2,3,4,5,6,8,10,20,40. The top CRRs are listed in
Table IV, where our R-UMLDA-A performs the best except
for L = 40. The detailed results for L = 2,5,20, and 40
are depicted in Fig. 8. From the figure, the first few features
(around ten) extracted by the R-UMLDA are the most powerful
features in recognition in all cases except when L = 40, where
the LDA and ULDA features are the most discriminative ones.

In addition, it should be noted that in each experiment,
if we tune the regularization parameter for R-JD-LDA and
R-UMLDA, and the range of v for R-UMLDA-A, improved

performance can be obtained since stronger regularization
results in better performance for a small L and weaker regu-
larization is better for a larger L [30]. Nonetheless, with fixed
range of -, our R-UMLDA-A still outperforms all the other
algorithms for L ranging from 2 to 20.

2) FR Results on the FERET Database: 1t is argued in [52]
that the learning capacity of any LDA-like algorithm is directly
proportional to L, and reciprocally proportional to C. Thus,
to evaluate the recognition performance with different C's, we
carry out four experiments on the FERET database with C' =
80, 160, 240, 320 and fix L. = 4 so that no more than half of
the face images are used for training. The numbers of training
and testing faces for each experiment are detailed in Table V.
Table VI lists the top CRRs, where R-UMLDA-A outperforms
all the other methods in all cases. Moreover, we can observe that
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TABLE IV
FACE RECOGNITION RESULTS ON PIE DATABASE: THE ToP CRRS (MEAN + STD%)
L Bayes LDA ULDA | R-JD-LDA | MPCA DATER GTDA TR1DA | R-UMLDA | R-UMLDA-A
2 |29.7+£1.2 | 35.0+1.6 | 44.1+1.3 | 38.0£1.9 |34.94+4.3 | 44.3+2.2 | 37.84+2.5 | 32.7£2.6 | 40.2+1.8 44.7+1.8
3 145441.1|47.6+1.8|55.7£1.3 | 53.5+1.4 |46.0+2.4|58.3+1.8 | 48.0£2.2 | 51.1+1.3 | 50.8+1.7 58.4+1.7
4 |57.3+1.4|59.0£2.0 | 63.4+1.4| 62.0£1.6 |52.2+1.7 | 65.9+1.8 | 544+ 1.7 | 61.9+1.9 | 58.2+1.3 69.0+2.1
5 | 65.6+1.1|66.7+1.4|67.8t1.1 | 67.9+1.3 |56.4+1.8|703+1.4|59.04+ 1.9 |67.1+1.6 | 63.2+1.5 74.9+1.5
6 | 71.6k1.1 | 71.2+£1.3 | 70.7£0.9 | 72.0£1.3 |59.94+1.6 | 74.3+1.3 | 62.7+ 1.3 | 69.7£1.5 | 67.0£1.1 78.7+1.4
8 | 79.0£1.2 | 76.6£1.1 | 74.5£1.0 | 78.5+1.1 | 66.6£1.0 | 79.9+£1.0 | 69.2+ 1.4 | 74.6+1.1 | 72.5£1.0 84.7+1.0
10 | 83.3£1.0 | 79.3£1.2 | 75.2+1.1 | 82.84+1.2 | 71.3£0.9 | 83.5+0.9 | 74.0+1.0 | 79.4+1.4 | 76.7+1.4 87.8+1.2
20| 92.0+£0.8 | 86.4+1.1 | 83.6+1.0 | 92.5+0.5 | 84.2+0.7 | 92.0+0.4 | 86.2+0.9 | 88.1+0.7 | 87.2+0.7 94.6+0.5
40 | 98.4+£0.3 | 98.6+0.2 | 97.7£0.3 | 97.7+0.3 | 94.8£0.5 | 97.4£0.3 | 95.2+£0.4 | 94.8+£0.4 | 94.7+£0.4 98.3+0.3
TABLE V respectively. Fig. 10(a) shows that the first few features (around
DETAILS OF THE FOUR EXPERIMENTS ON THE FERET DATABASE 20) produced by R-UMLDA are again the most discriminative
ones in classifying gait samples, while Fig. 10(b) illustrates that
C | number of training faces | number of testing faces R-UMLDA still has the best performance when recognizing
80 320 825 gait sequences using 3-20 features only. It is also noted that
160 640 1113 the Bz'iyesmn solution, Whlch is (?r}glnally proposed for .FR, is
not suitable for GR and its recognition performance deteriorates
240 960 1273
when more than 70 features are used.
320 1280 1433

the recognition performance of R-UMLDA-A and R-JD-LDA
are just slightly affected by C. In contrast, LDA and ULDA
are affected significantly by C'. Detailed recognition results are
shown in Fig. 9, where in all cases, the first few (around ten) fea-
tures extracted by R-UMLDA are the most discriminative ones
again.

E. Gait Recognition Results

After two sets of experiments to evaluate the performance on
2-D face images under varying L and C', we test the performance
on 3-D gait data. In GR experiments, gait samples are input di-
rectly as third-order tensors to the multilinear algorithms, while
for the linear algorithms, they are vectorized to 7040 x 1 vec-
tors as input. We follow the standard testing procedures in GR,
where the gallery set is used for training and the probe sets (A,
B, and C) are used for testing. Since R-UMLDA-A involves
random initialization, we report the results (mean and standard
deviation) averaged over 20 repeated experiments. In addition
to the CRRs of the gait samples, the CRRs of gait sequences are
also reported. The calculation of matching scores between two
gait sequences follows that in [10].

Tables VII and VIII present the top CRRs for individual gait
samples and gait sequences, respectively, for probes A, B, and
C and their average. R-UMLDA-A and R-JD-LDA achieve the
best performance on recognizing individual gait samples, indi-
cating that regularization is indeed effective for the challenging
GR problem as well. Regarding the performance on recognizing
gait sequences, R-UMLDA-A achieves the best results on av-
erage, showing that the proposed multilinear solution is indeed
more powerful than other solutions in recognizing tensorial sig-
nals. Fig. 10(a) and (b) plot the detailed CRRs averaged over
the three probes for individual gait samples and gait sequences,

F. Discussions

We have performed a large number of experiments on face
and gait recognition to evaluate our proposed algorithms. From
the results presented above, the following observations are
made.

1) The first few features extracted by the proposed
R-UMLDA, obtained with fixed parameters, are the
most discriminative ones in various scenarios, except in
the FR experiment on the PIE database with L = 40. This
demonstrates that extracting uncorrelated features directly
from tensorial signals using R-UMLDA is indeed bene-
ficial for recognition, especially in the low-dimensional
space under the SSS scenario, although the overall recog-
nition performance is limited by the number of useful
features.

The proposed R-UMLDA-A overcomes the limita-

tion of R-UMLDA in the number of useful features

through aggregating several differently initialized and
regularized UMLDA feature extractors. This scheme
has not only enhanced the recognition performance but
also alleviated the regularization parameter selection
problem. Without tuning the regularization parameter,

R-UMLDA-A achieves the best overall performance in all

the FR and GR experiments except in FR with L = 40

on the PIE database, where it is slightly outperformed

by LDA and the Bayesian solution. This comparative
evaluation demonstrates that R-UMLDA-A is a robust and
effective recognition algorithm for tensor objects.

3) Although random initialization 1is employed in
R-UMLDA-A, from the standard deviations based on
20 repeated trials reported in Tables IV and VI-VIII,
the recognition results obtained by R-UMLDA-A have
low variances, showing that it is competitive in terms of
stability as well.

2)
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Fig. 9. Face recognition results on the FERET database: correct recognition rate against the number of features used for (a) C' = 80, (b) C' = 160, (c) C' = 240
and (d) C = 320.

4) Moreover,

the best recognition performance of
R-UMLDA-A is reached with approximately the same
number of features in all the FR and GR experiments.
The addition of extra features only marginally alters
its recognition performance. It should be noted at this
point that unlike R-UMLDA-A, other algorithms exhibit
poorer stability characteristics in the sense that varia-
tion in the number of features used may lead to large
performance variation. As case in point, note that the
performance of the Bayesian solution starts to decrease
significantly when more than 150 features are used
in the FR experiments on the FERET database with
C = 320, and when more than 70 features are used in
the GR experiments on the USF database. LDA and
ULDA significantly underperform the other algorithms

on the FERET database with C' = 320. On the PIE
database with L. = 2 and on the FERET database
with C = 320, which are both very difficult learning
problems [52], R-JD-LDA shows abrupt decrease in
recognition performance when the last few features are
included. The recognition rates of MPCA, DATER, and
GTDA start to decrease when more than 100 features
are used in the FR experiments on the PIE database
with L = 2 and L = 5. The investigation of the rather
dramatic performance variations for some algorithms
observed when the number of features used changes
will be interesting but it is beyond the scope of this

paper.

Finally, in order to provide some insights into the R-UMLDA

algorithm, Fig. 11(a)—(c) depicts, as gray-level images, the first
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TABLE VI
FACE RECOGNITION RESULTS ON THE FERET DATABASE: THE TOP CRRS (MEAN = STD%)
C Bayes LDA ULDA |R-JD-LDA | MPCA | DATER | GTDA | TRIDA | R-UMLDA | R-UMLDA-A
80 | 60.5+1.7 | 60.8+2.0 | 58.9+1.5 | 68.1+2.0 | 54.7+£3.4 | 71.0£1.6 | 61.84+2.3 | 71.0+1.6 | 62.1+1.4 75.1+1.8
160 | 59.7£1.7 | 51.0£1.8 | 40.2+1.3 | 70.5£1.6 | 50.7+3.4 | 68.8+1.6 | 58.6+2.3 | 68.3£2.0 | 60.3%£1.6 75.1+1.7
240 | 54.2+1.1 | 41.8+1.4 | 10.8+0.8 | 68.7£1.0 | 51.24+2.6 | 64.0£1.3 | 54.54+2.0 | 62.7£1.3 | 58.6%1.3 73.2+1.0
320 | 52.44+1.0 | 29.141.1 | 20.9+0.9 | 66.4+1.1 | 48.9+1.6 | 62.0+£1.6 | 52.6+1.8 | 60.4+1.6 | 56.9+1.4 72.5+1.6
TABLE VI
GAIT RECOGNITION RESULTS ON THE USF GAIT CHALLENGE DATA SETS: THE TOP CRRS (IN PERCENT) FOR INDIVIDUAL GAIT SAMPLES
Probe Bayes | LDA | ULDA | R-JD-LDA | MPCA | DATER | GTDA | TR1DA | R-UMLDA | R-UMLDA-A
A 46.2 65.7 60.8 71.0 54.7 61.2 58.7 63.5 51.9 69.8+£1.3
B 442 49.2 43.3 55.8 50.4 51.8 54.1 50.8 459 59.4+1.0
C 26.0 31.7 30.0 40.0 343 33.6 38.8 35.7 25.2 36.7£1.0
Average | 39.5 51.8 47.6 58.3 46.9 49.7 51.7 52.5 43.0 57.94+0.8
TABLE VIII
GAIT RECOGNITION RESULTS ON THE USF GAIT CHALLENGE DATA SETS: THE TOP CRRS (IN PERCENT) FOR GAIT SEQUENCES
Probe Bayes | LDA | ULDA | R-JD-LDA | MPCA | DATER | GTDA | TRIDA | R-UMLDA | R-UMLDA-A
A 70.4 87.3 85.9 88.7 84.5 87.3 85.9 83.1 85.9 95.6£1.5
B 75.6 63.4 61.0 68.3 80.5 65.9 78.0 73.2 68.3 77.1£1.8
C 43.9 51.2 48.8 56.1 61.0 58.5 63.4 61.0 43.9 58.0+1.9
Average | 62.8 70.6 66.6 73.2 75.2 72.5 76.5 74.5 69.9 80.3£1.0
T SSse0g,
0.55 f 1
ot Bl
0.5 B 0.7 /
4
0.45 A 7
0.4
;_‘f; 0.35 %
= 2
T 03 g X
& 025 —#—Bayes 2 —#~— Bayes
(3] —%— LDA F O —*—LDA
0.2 —&— ULDA —&— ULDA ¥
—&— R-JD-LDA —&—R-JD-LDA
0.15 —A—MPCA —A—MPCA
—v— DATER —v—DATER
0.1 —b—GTDA —b—GTDA
' —<&—TR1DA —<—TR1DA
0.05 —o— R-UMLDA —o— R-UMLDA
R —6— R-UMLDA-A —6— R-UMLDA-A

2

10
Number of Features used

@

10°

Number of Features used

(®)

Fig. 10. Gait recognition results on the USF gait challenge data sets (average over probes A, B, and C): correct recognition rate against the number of features

used for (a) individual gait samples, and (b) gait sequences.

three EMPs obtained by R-UMLDA using the PIE database with
L = 20, the FERET database with C' = 320, and the USF gait
gallery set, respectively. From the EMPs for the face data, it can
be seen that there is strong presence of structured information
due to the multilinear nature, which is different from the infor-
mation conveyed by the bases produced by linear algorithms
such as eigenface [58] or fisherface [32]. It is interesting to note
that the eye area is more evident in the second and third EMPs in

Fig. 11(b). Fig. 11(a) and (b) indicates that the EMPs obtained
by R-UMLDA encode discriminative information found in a
large portion of the face, with each EMP capturing a particular
pattern. In the EMPs for the gait data, which are third-order ten-
sors displayed as their 1-mode unfolded matrices in Fig. 11(c),
structure is again observed across the three modes (column, row,
and time). The first gait EMP indicates that the most discrimi-
native information encoded by R-UMLDA comes from the foot
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Fig. 11. Illustration of the first three EMPs (in top-to-down order) obtained by R-UMLDA from (a) the PIE database with L = 20, (b) the FERET database with

C' = 320, and (c) the USF gait gallery sequences (1-mode unfolding is shown).

area (bottom), which is expected based on the physiology of the
human walking cycle. The second gait EMP demonstrates that
in addition to the foot area, the head area (top) also provides im-
portant discriminative information. The third gait EMP encodes
discriminative information from other parts of the body such as
the lower legs and the hip. These observations provide insights
into the nature of the features encoded by R-UMLDA and offer
a better understanding of this algorithm’s performance when ap-
plied to certain data sets.

VI. CONCLUSION

In this paper, a novel UMLDA algorithm is proposed to ex-
tract uncorrelated discriminative features directly from tenso-
rial data using the TVP of tensor objects, and a regularization
term is incorporated to tackle the SSS problem, resulting in the
regularized UMLDA. Furthermore, since the recognition perfor-
mance is affected by initialization and regularization, an aggre-
gation scheme is proposed to combine several differently ini-
tialized and regularized UMLDA feature extractors to achieve
better recognition performance while mitigating the problem of
regularization parameter selection. Experiments on biometric
applications, tested on the PIE and FERET face databases and
the USF gait database, demonstrate that the UMLDA-based rec-
ognizer achieves the best overall results compared with recog-
nizers based on other multilinear subspace solutions as well as
linear subspace algorithms.

APPENDIX [
PROOF OF THEOREM 1

Proof: For a nonsingular s%;:), any u,(,"*)
malized such that ué"*)T

can be nor-
é(v;;)uén*) = 1 and the ratio u,(,"*)T
~ * * #\T ~ * *

ngp Juf™) ful" Swp)uz(," ) keeps unchanged. Therefore, the
maximization of this ratio is equivalent to the maximization of

#\T ~ * * #\NT ~ * *

ul™) Sgl Ju{"") with the constraint that u}" "’ S%;p)u;" ) =
1 and Lagrange multipliers can be used to transform the problem
(11) to the following to include all the constraints:

Flufr)) = )" 85 uln) - V(u;n*>Ts<V;;>u,gn*> _ 1)

p—1
w\T o~ ®
—Z,uquz(," Y g, @D

g=1

where v and {pq,¢ = 1,...,p — 1} are Lagrange multipliers.

The optimization is performed by setting the partial derivative
of F (ugl )) with respect to u,()" to zero

OF(y")) e (e &(n*) (n*
7811("*) = ESBP ug ) — QVSWP ul(7 )
P

p—1
- Z 1Y gy = 0. (22)
g=1

Multiplying (22) by u" " results in
)T &(n* n* 2T &(n* n*
2u1() ) Sggp )ul() ) — 21/u1() ) SE,VP)UI(, )

=0=2v=—mr
NCETINCY

(23)

which indicates that v is exactly the criterion to be maximized.
Next, a set of (p — 1) equations are obtained by multiplying

~ * ~ ook —1
@by gl YL ST g=1,. .

p ,p — 1, respectively

*)T

p—1
~n*T”n*7l”n* n* “(n
26, Y58y SE Tul) =D gl Y
g=1

.ss;j Y g, =0. (24)
Let

Pp—1 =l pi -+ ppa]” (25)

and use (14), then the (p — 1) equations of (24) can be repre-
sented in a single matrix equation as following:

2GL Y 8T8 Il — Gl vl

*)T

Sy 0. (26
W, p p—1Mp—1 = 0. (26)
Thus
< VT &(n) " o (n -
My 1 =2 (G,?_le(," )ngzvp) Yz() )Gp—1>
~ AT~ ()L & (n* n*
GEYOTSE TS a7

Since from (14) and (25)

p—1

> o ng Y gy =Y Gy (28)

q=1
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(22) can be written as shown in the equation at the top of the
page. Using the definition in (13) a generahzed eigenvalue
problem is obtained as R )S(n = I/S( u. Since v is
the criterion to be max1mlzed the maximization is achieved
by setting u,() ") to be the (unit) generalized eigenvector corre-
sponding to the largest generalized eigenvalue of (12). [ |

APPENDIX II
CONNECTIONS AMONG VARIOUS MLDA
ALGORITHMS AND LDA

The traditional linear projection is a vector-to-vector projec-
tion (VVP). The two multilinear projections are the TTP and
the TVP. Thus, LDA is based on VVP. DATER and GTDA are
MLDA through TTP (MLDA-TTP), and TR1DA and UMLDA
are MLDA through TVP (MLDA-TVP). The DATER algorithm
[2] is a specific realization of the MLDA-TTP, with the objec-
tive of maximizing the scatter ratio. The GTDA algorithm [15] is
an MLDA-TTP variant maximizing the scatter difference, The
TRI1DA algorithm [18], [19] is an MLDA-TVP variant maxi-
mizing the scatter difference, with a heuristic residue-based ap-
proach. The UMLDA algorithm proposed in this paper is an
MLDA-TVP variant maximizing the scatter ratio, while pur-
suing uncorrelated features.

The relationships between the LDA, MLDA-TTP, and
MLDA-TVP are revealed by examining the relationships be-
tween VVP, TTP, and TVP first. Obviously, VVP is the special
case of TTP and TVP with N = 1. Each projected element
in TTP can be viewed as the projection of an EMP formed
by taking one column from each projection matrix so the pro-
jected tensor by TTP is obtained effectively through ngl I,
interdependent EMPs, while in TVP, the P EMPs obtained suc-
cessively are not interdependent in general. Moreover, the pro-
jection using an EMP {u®" u®" _ u®™"} can be written
asy = (X, U) = (vec(X),vecUd)) = [vec(td)]" vec(X).
Therefore, an EMP is equivalent to a linear projection of
vec(X) on a vector vec(U). Sinced = uM ouPo--.oulV),
the EMP is in effect a linear projection with constraint on the
projection vector such that it is the vectorized representation
of a rank-one tensor. Compared with a projection vector of
size I x 1 in VVP specified by I parameters (I = Hfj:l I,
for an Nth-order tensor), an EMP in TVP can be specified
by Zgzl I,, parameters. Hence, to project a tensor of size
Hf:;l I,, to a vector of size P x 1, the TVP needs to esti-
mate only P - 25:1 I,, parameters, while the VVP needs to
estimate P - Hfj:l I,, parameters. The implication in pattern
recognition problem is that the TVP has fewer parameters to
estimate while being more constrained on the solutions, and
the VVP has less constraint on the solutions sought while

having more parameters to estimate. Summing up, LDA is a
special case of MLDA-TTP and MLDA-TVP when N = 1,
with the scatter ratio as the separation criterion. On the other
hand, the MLDA-TTP is looking for interdependent EMPs
while the EMPs sought successively in the MLDA-TVP are not
interdependent generally. Furthermore, for the same projected
vector size, the MLDA-TVP has fewer parameters to estimate
while the projection to be solved is more constrained, and LDA
has more parameters to estimate while the projection is less
constrained.
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