Exhibition&Conference

@ embeddedworld

Automatic Verification of (un)intended Data and
Control Flows in Embedded Software

Martin Becker

The MathWorks GmbH
Munich, Germany
mbecker@mathworks.com

Abstract—Data and control flows are essential to software ar-
chitecture and are commonly defined during the design phase. Yet,
they are rarely verified later during implementation. Instead, most
verification activities focus on guideline compliance, functional
tests, and robustness. In this paper, we dive deeper into the topic
of flow analysis and discuss which methods can be used to reliably
detect unintended behavior and prevent functional errors, such as
forbidden communication between processes of different critical-
ity, accidental disclosure of sensitive data, and even algorithmic
errors. Using concrete examples, we explain the different types of
flow dependencies and introduce the method of specification-
driven code slicing, which can automatically verify the absence of
certain unintended flows. This addresses certification require-
ments from automotive engineering ("Freedom from Interfer-
ence"), aerospace (“Data and Control Coupling”), and industrial
automation ("Restricted Data Flow') by asserting the safety and
security properties of software applications. The outlined method
can significantly reduce the number of issues discovered late in
testing campaigns.

Keywords—data flow, control flow, interference, static analysis,
formal verification.

L INTRODUCTION

Software plays a fundamental role in numerous devices, from
consumer electronics, industrial controls, and medical devices to
rail, air, and space technology. Many systems have reached a
complexity where programming errors are not only possible but
likely: Statistics suggest that developers typically make 10 to 50
errors per 1000 lines of code [1]. Many of those errors are caught
later by checking compliance to coding guidelines and running
unit tests. However, there is one class of defects that is rarely
tested and yet can severely impact safety and security properties,
namely errors in flow dependencies. This paper focuses on this
less-examined error class and explain which methods and tools
can be used to eliminate certain flow errors reliably.

Fundamentally, there are two types of flow dependencies,
typically occurring in combination: A control (flow) dependency
(see Figure 1a) exists when the execution of an instruction (here
y:=12) depends on the value of an expression (here x), and a data

©2024 The MathWorks, Inc.

Jacob Palczynski

The MathWorks GmbH
Aachen, Germany
jpalczyn@mathworks.com

1| if (x > 10) then 1| a := read_input()
2 | y =12 2| b:=5
3 | end if 3| z:=(a*b)/2

(a) Control flow dependency (b) Data flow dependency

Figure 1: Illustration of the two types of flow dependencies.

(flow) dependency (see Figure 1b) exists when the value of an
expression (z) depends on the value of another (a and b, as well
as indirectly on read_input).

The sum of all flow dependencies drives the logical behavior
of a software. Therefore, flow errors can lead to undesired be-
havior and, as we will demonstrate later — even to crashes. It
should be noted that such errors cannot be verified by checking
coding guidelines like MISRA C™ or through robustness test-
ing. The intended behavior is not evident from the source code
but rather captured in high-level specifications such as software
design documents. Moreover, even robust, and functionally cor-
rect software can still suffer from flow problems, for example by
exposing sensitive data and creating a security vulnerability
(e.g., Heartbleed [2]).

Verifying proper flow dependencies is essential when pro-
cesses with different levels of criticality shall be segregated. For
example, in medical devices, it is vital to isolate the logging of
patient data from the operation of an insulin pump. In a road ve-
hicle, the separation between the audio system and the driver as-
sistance systems is essential. In both cases, unintended interfer-
ences could lead to hazardous outcomes. Therefore, industrial
standards typically require an analysis of data and control flows
[3][4] [5] to obtain evidence of correct implementation. Unfor-
tunately, they provide limited detail regarding which aspects of
data and control flows shall be verified. This paper aims to draw
a clearer picture of the demands and utility of flow analysis.

A. Challenges

Typical development tools such as compilers, debuggers, and
unit tests have limited detection capabilities regarding the issues
mentioned earlier. They can only identify the shallower flow er-
rors and can merely confirm their existence rather than prove

www.embedded-world.eu

their absence. To thoroughly identify errors in control and data
flows, we need tools that operate directly on the code base—
where the semantics remain traceable—and consider the design
specifications. Such advanced tools are essential for a more ac-
curate and comprehensive error detection process.

Development environments (e.g., IDE) come to mind for this
purpose. However, they are inadequate, too. Functionality such
as reference search (e.g., “Find all References” in Microsoft VS
Code™) only shows direct access to variables. It may miss tran-
sitive effects like propagation into function parameters and indi-
rect access via pointers ("Alias"). Other information, such as the
call hierarchy, is not necessarily complete, either, especially in
the presence of complex constructs like polymorphism and func-
tion pointers. As a result, data and control flows cannot be fully
tracked and verified in the development environment.

1| int main(int argc, char** argv) {

2] const int A = 42;

3| char buf[3];

4] printf("A=%d, argc=%d\n", A, argc);
5] buf[argc] = 66;

6| printf("A=%d\n", A);

71 return @;

Figure 2: Undefined behavior may create invisible data and control flows.

Another pitfall is Undefined Behavior (UB)—code constructs
that, by definition of the respective programming language (e.g.,
the C99 standard [6]), can have arbitrary side effects. These can
create invisible dependencies beyond the semantics of the pro-
gramming language and may cause significant testing difficul-
ties. The example in Figure 2 illustrates such UB. Although var-
iable A is declared as a constant with a value of 42, it unexpect-
edly carries the value 66 at the end of the program. The reason
is the assignment on line 5, which represents UB. As argc is
three and thus outside the bounds of buf, a buffer overflow hap-
pens. The value assigned to buf[argc] is actually written to the
memory area of A, as it is directly adjacent to buf. Hence, an in-
visible dependency exists between the variables argc and A. To
avoid such semantic gaps, UB must be removed entirely.

Static code analysis tools can provide deeper insights into the
code and even identify UB. Moreover, they can identify errors
in control and data flows like dead branches or writing to local
variables without further use. Such tools are highly recom-
mended to fix defects early and improve the overall code quality.
However, they cannot verify flow correctness on their own but
merely support a manual flow analysis. In the following, we list
the requirements for reliable and precise verification of control
and data flows to ensure all these challenges can be addressed.

B. Requirements for Reliable Flow Analysis

A method for the reliable analysis of data and control flows must
fulfil the following requirements:

©2024 The MathWorks, Inc.

e Identify undefined behavior (“no semantic gaps”):
To avoid invisible data and control flows, UB must be
identified so the developer can remove it.

e Soundness (“no missed flows”): Every feasible pro-
gram state must be modeled. This requires, among other
things, pointer analysis (Alias Analysis) to capture indi-
rect accesses and a semantically complete model of the
programming language, including its standard library.

e Precision (“no needless warnings”): Variable values
and their relations must be calculated as precisely as
possible. Towards this, a value analysis is necessary,
which models all operations and expressions, including
arithmetic, as precisely as possible.

e Tracking causal chains: Flows should be traceable
across function calls (Interprocedural Analysis), separa-
ble in overlapping execution paths (Context Sensitiv-
ity), and complete in the presence of multitasking.

e Qualified: In the context of industrial standards (e.g.,
ISO 26262 [3] or IEC 61508), the tool should be vali-
dated and qualified, so that its outputs can be used to
claim certification credits.

Tools that meet these requirements are typically called Slic-
ers based on Formal Methods and exist for both model-based
development (e.g., [7]) and for source code (e.g., [8]).

II. ANALYSIS APPROACH

In this section we explain the technology of (sound) Program
Slicing, which satisfies the methodological requirements dis-
cussed in the previous section. For brevity, we limit the expla-
nation to code level, but the technology has been extended to-
wards higher-level design models (e.g., Simulink [7]), too.

To conduct a precise, sound, and transitive flow analysis, the
following two steps are required:

A. Perform Sound Semantic Analysis: Compute all pos-
sible variable values, flow decisions, and pointer targets
that are feasible in the program, including instances of
undefined behavior.

B. Construction of a Program Dependency Graph: Lev-
erage the data from the previous step to capture transi-
tive flows between all program locations and enable
end-to-end flow discovery and verification.

We provide more details on each of the two in the following:

A. Perform Sound Semantic Analysis

The first step towards flow verification is to analyze the source
code for possible control and data flows. This includes the anal-
ysis of variable values (since they drive control flow decisions)
and interprocedural analysis (callers, parameter values, effects
of callees, and return values). While many software analysis ap-
proaches exist, only a few satisfy the soundness and precision
requirements stated in the previous section.

Abstract Interpretation [9], a member of the family of formal
verification methods, is a suitable analysis technique for large-
scale software applications. When implemented consistently and
used correctly, it offers soundness by exhaustively considering
all possible program states [9, p. 242]. In instances of

void £(inl, in2, in3)

| RACY

int* z = &y; '
x = inl + 10;
y = 0: ,A\
{
y = 1;
}
if (in3 >= 0)
outl = x;
cutlZ = ;

Figure 3: Source code and its Program Dependency Graph.

uncertainty, such as when contextual information is lacking or
operands are unknown, Abstract Interpretation overapproxi-
mates, i.e., assumes that the possibility in question is feasible.
To achieve soundness, it must also resolve all pointers (“Alias
Analysis”), as they can alter variable values and control flows
indirectly.

As a beneficial side effect, sound Abstract Interpretation can
identify when parts of the program are logically unreachable.
Figure 3 shows that if the value analysis deduces that in3 is
strictly negative, then the increment y++ on line 16 becomes un-
reachable. Thus, there is no data dependency on line 16 and no
control dependency on line 14. This information will be lever-
aged later.

Finally, sound Abstract Interpretation can identify undefined
behavior. As discussed before, this is a prerequisite to trust the
semantics of the programming language. More details on that,
as well as its effects, are given in [10].

B. Construct Program Dependency Graph

Once the sound semantic analysis is complete, the deduced in-
formation is used to transitively chart all data and control flows
through the entire software. We leverage a method called Pro-
gram Slicing, as proposed by Mark Weiser [11]. It builds a pro-
gram dependency graph (PDG) that captures all feasible control
and data flows in one view, as shown in Figure 3: Nodes repre-
sent variable reads or writes, and edges represent direct depend-
encies on preceding nodes. Moreover, there are two types of
edges: a) data flow edges, depicted with dashed lines, and b)
control flow edges, depicted with solid lines. For example, the
PDG in Figure 3 shows that out1 on line 18 has a data depend-
ency on the assignment of x on line 8, which in turn has a data
dependency on inl. Similarly, we can see that out2 has a data
dependency on the assignment of z, and that z itself has multiple
data dependencies, which are moreover control-dependent on
the values of x and in3. Constructing such a graph is straightfor-
ward once semantic analysis has been completed.

Before we use the PDG for verification means, we can fur-
ther simplify it thanks to sound and precise information from the
semantic analysis. Since we know that line 16 in Figure 3 is

©2024 The MathWorks, Inc.

unreachable (see previous section), we can safely remove the as-
sociated node in the PDG. This immediately cuts off the control
dependency in3>=0 and the data dependency to in3. Similarly,
more edges can be removed if we have precise information about
pointers. Effectively, this step reduces needless warnings.

We now have a complete graph that precisely captures data
and control flow dependencies. Verifying a specific dependency
becomes a reachability problem, which can be solved with
standard graph algorithms. This graph can be used in forward
direction (show downstream impact) or backward direction
(show influencing parts). To distinguish between data or control
flows, the according edge type can be removed prior to reacha-
bility analysis.

In the next section, we explain how this analysis approach
can be used in development workflows.
III. WORKFLOW IN PRACTICE
The technology can be used in two fundamentally different
ways, namely:
A. Interactive exploration, and
B. specification-driven flow verification.

Both approaches differ in application areas and workflows.

A. Interactive Exploration

Most users starting with data- and control flow analysis have no
specific expectations regarding the results. They focus on dis-
covering existing flows and understanding the program logic.
One obvious scenario is to better understand legacy software.

Typically, explorative use starts by selecting start or end
points. The computed flows from/to these points are highlighted
in the design artifact. Examples are shown in Figure 4 for both

*4a riwdemo,_roll bus - Simulink

Bt .)
| Al_Crd Cmd

- — Twotte _'l";.ll‘.-?.l?D

AL

 [—— PP ST N O CnCompensason ote_Cra

S - singie (-1515] Al Crd 1)

. f
(Dl MY . N Cra

bockean [01)

phi_il oL}

this output is
not affected

Engages
180, 1
Aol wngle |- 80}

P
void f(inl, in2, in3) {

1

2 int *z = &y;

3 X = inl + 10;

: yi-f-'_(2,>= o) Input in1 affects
o g- 1 output out2 via
7| if (in3 >= @) z, x and y

8 yi++;

9 outl =

10 out2 = *z;

11|}

p.

Figure 4: Interactive, explorative dependency analysis on models and code.

www.embedded-world.eu

model and code. The user can interactively walk through the
software and understand the logical coupling between various
program locations and variables.

Exploration can also go beyond discovery. It can be applied
for impact analysis (downstream effects) or taint analysis (up-
stream influences). This can be leveraged to assess the criticality
of a certain variable, component, or signal in the context of the
whole software. Assume, for example, that the flow analysis
shows that a variable can have downstream effects on the brak-
ing system of a vehicle. The user can now deduce that this vari-
able is safety-critical and consider implementing additional pro-
tective code. Similarly, if a security problem appears in one part
of the software, explorative use can help identifying the potential
damage that follows.

These are just some of many possible use cases for interac-
tive exploration. From now on, we will focus more on the spec-
ification-driven analysis.

B. Specification-driven Verification

The interactive exploration reliably captures all flows, yet it is
still “blind” to the specification. Thus, it cannot identify unin-
tended behavior and wrong implementations. We address this
limitation by adding the notion of (un)expected flows as an anal-
ysis input. The analysis can automatically prove or disprove
these, thereby identify erroneous flows in the code. This relieves
developers from the burden of manually exploring the model or
code. Instead, they only will focus on deviations, which will be
explained to them with specific counterexamples. If flows are
proven to be compliant with the expectation, no further steps are
required, and certification credits can be claimed.

The specification-driven analysis generally consists of the
following three steps:

1. Define (un)expected flows: First, declare mandatory or
forbidden flows in a machine-readable format (e.g.,
XML file). Typically, this is done pairwise (A must not
influence B) or group-wise (e.g., the set of critical vari-
ables must have no data dependency on the set of uncrit-
ical variables).

2. Run flow analysis: The analysis is executed as de-
scribed in Section II. The specifications from the previ-
ous step are converted into reachability objectives and
evaluated on the dependency graph. For compliant ob-
jectives, no further action is necessary. For each unex-
pected yet feasible flow, the analysis generates a coun-
terexample: one complete trace exposing the unex-
pected flow. Each flow that is expected yet absent is
flagged for further review.

3. Review of deviations: Since the analysis is based on
formal methods (see Section II), only deviations from
expectation need review. In case of an unintended flow,
the counterexample (see “read of username,” orange in
Figure 1) makes debugging easy and efficient. For miss-
ing flows (see “write to calibrated,” red), counterexam-
ples are not available for obvious reasons. The reviewer
will have to analyze the cause of the missing flow.

©2024 The MathWorks, Inc.

The specification step can be automated for some well-
known patterns (e.g., LDAP injection, missing input validation),
requiring no additional effort for standard flows. However, the
real power of this specification-driven usage comes with custom
patterns that are typically known from the design but never
checked. One example is components with different safety lev-
els (e.g., ASIL in ISO 26262 [3]). Components with higher crit-
icality must not depend on lower-criticality components (“Free-
dom from Interference”). This objective allows to automatically
generate specifications for unexpected flows.

This specification-driven verification is well-suited for CI
pipelines, since it generates a list of deviations to be reviewed
alongside the findings of ordinary guideline checkers.

v
| View By Sources View By Sinks

Name Impact Specification # Impacts # No-impacts File
[=logger@__arg_1 1 1 pst_stubs_wir.c
B-7% Expected absence of impact 1 1 flows.c
-Sink occurrence 2 0 1 flows.c
“-sink occurrence 1 1 0 flows.c
[=)-Write to temp 0 6 flows.c
- @ % Write to calibrated Expected impact 1} 3 flows.c
. --Sink occurrence 3 1] 1 flows.c
Sink occurrence 2 0 1 flows.c
. Sink occurrence 1 0 1 flows.c
B-v % Read of username Expected absence of impact 0 3 flows.c
i-Sink occurrence 3] 1 flows.c
Sink occurrence 2 0 1 flows.c
“-Sink occurrence 1 1] 1 flows.c
¥ Expected absence of impact |2
Possible impact detected between source and sink.
Source:Read of username
Sink:logger@__arg_1
See all occurrences for this source/sink couple in the Impact Analysis view
Event File Scope Line
1 Source is selected by rule user input. impact.xml impactxml 91
2 Source is matched here. flows.c main() 46
3 Call to 'send_alarm', argument 0: 'recipient' impacted flows.c main() 46
4Entering function 'send_alarm', argument 0: 'recipient’ impacted flows.c send_alarm() 29

send_alarm() 34
send_alarm() 34

5Read from 'recipient' flows.c
6Sink is matched here. flows.c
Sink is selected by rule logger data. impact.xml impactxml 12

7
8 7 © Possible impact detected between source and sink. impact.xml| File Scope 105

Figure 5: Results of a specification-driven flow analysis and one deviation.

IV. EXAMPLES

To illustrate the specification-driven analysis approach, we use
a temperature monitoring program, shown in Figure 6. It reads a
sensor, calibrates the measurement value, and sends an email no-
tification if the temperature becomes too high. We want to verify
the following objectives for the control and data flows:

1. Measurement values are unaffected by user inputs.
2. The measurement result is always calibrated.

3. Confirm the absence of exploitable security vulnerabil-
ities in the program.

We will analyze these objectives using Polyspace Code
Prover [8], a sound abstract interpretation tool. Polyspace Code
Prover enables users to prove the absence of undefined behavior
and verify the control and data flows in C/C++ code.

9| #define PERIOD 1
1@| #define CRITICAL 3@

12| float calibrate (float rawval, unsigned t) {

13] const int calibrated = rawval * ©.27392f + 273.15;
14| logger(“"sens is %.1f", calibrated);
15] return (t > @) ? calibrated : ©;

18| int fast_sensor_read (unsigned* const t, int mode_pp) {

19 (*t) += PERIOD;

20| int temp = raw_sensor();
21 if (mode_pp) {

22 // temp =

23 calibrate(temp, *t);
24

25 return temp;

26| 3}

28| static char cmdbuf[2@@]; // not on stack
29| void send_alarm (const char*const recipient, int temp, unsigned t) {

30| if (@ < sprintf(cmdbuf,

31] "echo '%d°C at t=%u' | mail -s 'Overheating' %s",
32] temp, t, recipient))

33| (void) system(cmdbuf);

34| logger("Sent email to %s", recipient);

35| }

36|

37| int main (int argc, char** argv) {

38 const char* const username = argc > 1 ? argv[1l] : "mbecker@mathworks.com",
39 unsigned time = @; int temp = ©;

40 int do_pp = get config("raw_mode");

41| do {

42 sleep(PERIOD);

43 temp = fast sensor read(&time, do_pp);

a4 } while (temp < CRITICAL);

45

46 send alarm(username, temp, time);

47 return time;

48| }

Figure 6: Example program code.

A. Absence of Undefined Behavior

As stated earlier, the absence of undefined behavior is a prereq-
uisite for control and data flow analysis. A first verification run
exposes undefined behavior on line 32. The e-mail address pro-
vided by the user could be too long, causing a buffer overflow
and crashing the program. It could even inject malicious code
into our program and change the control flow.

We can fix this potential undefined behavior by replacing
sprintf with snprintf. Re-running the verification on the fixed
code confirms the absence of undefined behavior (Figure 7). We
can now rely on the programming language’s semantics.

B. Proof of Flow (in)dependency

Our first verification objective (“user input must not affect meas-
urement data”) is particularly interesting, since it is an example
of interference analysis from various safety standards (‘“Free-
dom from Interference” from 1SO26262 [3], “Data and Control
Coupling” from DO-178C [4], and “Restricted Data Flow” from
IEC 62443 [5]). The first step towards verification is specifying
an expected data dependency as “(source) username must not im-
pact (sink) temp.” Subsequently, the tool can automatically ana-
lyze the data flows and identify deviations. For our example

Analysis information: Configuration - Analysis assumptians
Check distribution
Proven: 100%

Code covered by verification 2/

100% 100% 100%
Green (40)

0. T T T
Files Functions Code operations

Figure 7: Prerequisite for flow analysis — absence of undefined behavior.

©2024 The MathWorks, Inc.

O command executed from externally controlled path (Impact: Medium) (2 &
Path to the command argument of 'system' is from an unsecure source.

Event File Scope Line
1 Formal parameter is a tainted pointer flows.c main() 37
2 Assignment to local pointer 'username’ flows.c main() 38
3 Entering function 'send_alarm' flows.c main() 46
4 Call to sprintf flows.c send_alarm() 30
5 Entering if branch (if-condition true) flows.c send_alarm() 33
[Command executed from externally controlled path flows.c send_alarm() 33

Figure 8: Tainted data flow from external source.

program, we get a confirmation for the absence of any interfer-
ence (green result in Figure 5). Since the tool is sound, we have
successfully verified our objective.

For the second objective, we expect to always have a de-
pendency between temp and calibrated. We provide and verify
the specification “calibrated must impact temp.” The red result
in Figure 5 reveals a programming error; the assignment on line
22 has accidentally been commented out. After fixing the issue,
the tool finds another—yet intended—dependency on line 40.
Hence, we have verified all expected and specified functional
dependencies.

C. Detection of Security Vulnerabilities

The third objective relates to the cybersecurity properties of our
program: Are there any control and data flows that an attacker
could exploit?

As a first step, we run a taint analysis. It automatically iden-
tifies data controlled by external actors and traces its usage to
critical locations in the code. The result (Figure 8) shows that
input validation is missing, which could allow a command injec-
tion. The user input username is not checked and blindly passed
(indirectly) to the system call on line 33. Even though we have
already limited the inputs with snprintf, an attacker could inject
additional commands like “a@b.com; shutdown”. We can elimi-
nate this vulnerability by rejecting all inputs that are not a syn-
tactically valid e-mail address (not shown here for brevity).

Finally, security vulnerabilities can also mean disclosing
sensitive data (i.e., a confidentiality breach). In our example, we
can consider the username as sensitive data and verify the spec-
ification “username must not flow into function logger”. Our
analysis falsifies this objective, and the counterexample (Figure
9) shows a trace that allows for writing the username to the log-
file.

After the straightforward fix and rerunning the analysis, all
three objectives have been successfully verified. Our program is
now robust (no undefined behavior), measures the temperature
reliably (absence of unwanted flows), and free from common
security vulnerabilities.

V. DISCUSSION

The previous examples illustrate that an analysis of data and
control flows can help identifying logical defects in the applica-
tion, well beyond what coding guidelines and functional tests
can do. In this section, we discuss the strengths and weaknesses
of the described approach and where it is used best.

www.embedded-world.eu

The presented specification-driven flow analysis is suitable
for safety- and security use cases, in particular to support certi-
fication and qualification activities for critical software. Since it
is sound, the underlying analysis method exhaustively identifies
and tracks data and control flows. By design, the analysis may
consider a superset of all feasible flows, yet never a subset. This
makes it a safe method to demonstrate the absence or independ-
ence of certain data- and control flows, and thereby directly ad-
dresses requirements from DO-178C (“Data and Control Cou-
pling [4]), ISO 26262 (“Freedom From Interference” [3]), [EC
62443 (“Restricted Data Flows” [5]) and other safety and secu-
rity standards.

char button_pressed = read_reg(0xF4);
if (safety_switch) {
valve_pos = button_pressed;

Figure 10: Is there a definitive flow dependency between valve_pos and
button_pressed?

Conversely, this approach is suboptimal when the objective
is to prove the presence of a mandatory flow. Consider the situ-
ation in Figure 10, where the value of valve_pos shall depend on
the value of button_pressed. The described approach can find a
flow dependency between these two variables. However, it can
also detect the conditional control dependency on the safety
switch. This code permits a scenario where the button never in-
fluences the valve position due to the safety switch being per-
manently false. Only in two specific circumstances exists a sim-
ple answer to the verification objective: If the predicate is always
true, then the method can confirm the presence of the mandatory
data flow. On the other hand, if the condition is always false,
then there is no feasible flow, and the method can disprove the
expectation. In all other cases, it can only provide a (counter)ex-
ample and leave it to the reviewer to check whether the condi-
tions therein satisfy the mandatory flow expectation.

A. Threats to Validity

There are several potential systematic errors that may refute the
correctness or completeness of the analysis results. However,
most of them can be reduced with reasonable effort:

1. Missing specification: The analysis can only verify what
has been (implicitly or explicitly) specified, and hence
cannot verify the correctness of all data and control
flows. This is a fundamental limitation of all code analy-
sis methods and is not specific to our approach. To reduce
the risk of missing specifications, we recommend auto-
matically importing design specifications, such as differ-
ent safety/security levels and their implied independence.

2. Incorrect specification: Errors within the specification
itself can result in incorrect outcomes. To mitigate such
risks, the analysis tool can detect those that are incon-
sistent with the code. However, certain classes of mis-
specification may escape automatic detection due to a
lack of understanding of the intention. Implementing a
review process for the specifications can help uncover
such issues. Additionally, functional testing can serve as
a complementary measure.

©2024 The MathWorks, Inc.

¥ Expected absence of impact 2/
Possible impact detected between source and sink.
Source:Read of username
Sink:logger@__arg_1

See all occurrences for this source/sink couple in the Impact Analysis view

Event File Scope Line

Source is selected by rule user input impact.xml impactxml 91
Source is matched here. flows.c main() 46
Call to 'send_alarm', argument 0: 'recipient’ impacted flows.c main() 46
...Entering function 'send_alarm', argument 0: 'recipient’ impacted flows.c send_alarm() 29

....Read from 'recipient’ flows.c send_alarm() 34
....5ink is matched here. flows.c send_alarm() 34
Sink is selected by rule logger data. impact.xml impact.xml 12

7 + Possible impact detected between source and sink. impact.xml File Scope 105

Figure 9: Data flow leaking sensitive data.

B Y A N

@

3. Unfixed undefined behavior: As explained in section
I.A., undefined behavior can introduce invisible data and
control flows. A sound analysis tool can identify it or
prove its absence. By fully removing the identified unde-
fined behavior, users can mitigate this risk.

4. Incomplete analysis perimeter: External interactions
not included in the analysis—such as unanalyzed pro-
cesses, assembly code, or the use of libraries where no
source code is available-may introduce additional flows.
While static code analysis is still effective, it uses “stubs”
to represent the missing parts. These are functions with-
out a visible definition and are presumed to have no im-
pact on the known flows. Consequently, a flow could be
incorrectly deemed absent when a stub is involved. To
mitigate this risk, the tool should warn developers and
providing them the opportunity to define the flows
through stubs manually. Moreover, the tool should in-
clude “smart stubs” for functions from standard libraries
to enable sound modeling of the effects of functions like
memcpy.

5. Incorrect analysis assumptions: The correctness of
static analysis depends on the analysis setup and assump-
tions, for example, on the modeled compiler and run-time
environment, but also on the range of inputs considered
feasible. For a deeper discussion of these assumptions,
please refer to [10]. To mitigate the risk of wrong analy-
sis assumptions, we recommend a) using the tool’s auto-
matic analysis configuration (e.g., tracing of the build
command, compiler detection) and b) minimizing the as-
sumptions, especially regarding ranges and validity of
external inputs. This is also beneficial for robustness and
cybersecurity properties, as discussed in [10].

6. Correctness of the analysis tool: The analysis tool itself
is a software and thus might have defects that may lead
to wrong outputs. This can be mitigated by a) choosing a
sound analysis tool, since it leverages mathematical mod-
els that permit no false negatives and b) only using tools
that are validated and/or qualified, i.e., checked by certi-
fication bodies or validation tests.

The aforementioned tool-related mitigation techniques are im-
plemented in Polyspace Code Prover [8], to reduce systematic
errors and to reduce the risk of incomplete results.

VI. CONCLUSION

Correct data and control flows are crucial for safety and security.
Yet, their verification requires going beyond static code analy-
sis. It necessitates checking the flows against a logical specifica-
tion to detect unwanted interactions within the implementation.
Specification-driven flow verification offers a more profound
analysis than standard coding guidelines, robustness testing, or
requirement-based testing with a debugger.

The described approach can be applied either exploratively,
for understanding legacy systems and assessing modifications,
or automatically, to enforce a correct-by-design approach and
detect logical errors. Our proposed workflow includes (1) ex-
tracting expected flows from design specifications, (2) analyzing
to confirm or refute these expectations, and (3) examining any
discrepancies. Automation is possible for common patterns,
such as input validation and SQL injection, while application-
specific flows require manual specification.

To obtain correct results and keep the verification process
efficient, we suggest (1) eliminating undefined behavior, (2) us-
ing capable code analysis tools to verify standard flow patterns,
and (3) defining and verifying custom flow specifications. Ad-
vanced code analysis tools can support all three steps. Although
not covered here, other uses of this methodology include identi-
fying prohibited function calls, analyzing configuration param-
eters, and ensuring data privacy.

In summary, flow analysis can identify critical defects early
in the development process, surpassing traditional robustness
and compliance testing and preventing complex bugs during
later stages. It helps users verify flow specifications, thereby
helping to demonstrate the absence of unintended interferences
and side effects.

©2024 The MathWorks, Inc.

(1]

VII. REFERENCES

S. McConnell, Code Complete, 2nd Edition ed., Microsoft
Press, 2004.

Wikipedia, "Heartbleed," 8 Dec 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Heartbleed&oldid=
1185261000.

International Organization for Standardization, "ISO
26262:2018, Road vehicles — Functional safety," 2018.
RTCA, "DO-178C Software Considerations in Airborne
Systems and Equipment Certification," 2011.

1IEC, "IEC 62443-1-1 Industrial Communication Networks -
Network and system Security," 2009.

ISO/IEC, "ISO/IEC 9899:1999 Programming Languages - C,"
Iso.org, 2011.

The MathWorks, Inc, "Simulink Check," [Online]. Available:
https://www.mathworks.com/products/simulink-check.html.
[Accessed 01 Dec 2023].

The MathWorks, Inc, "Polyspace Code Prover," [Online].
Available: https://www.mathworks.com/products/polyspace-
code-prover.html. [Accessed 01 Dec 2023].

P. Cousot and R. Cousot, "Abstract Interpretation," in
Symposium on Principles of Programming Languages, 1977.
M. Becker and J. Palczynski, "Increasing Resilience to
Cyberattacks through Advanced Use of Static Code Analysis,"
in Embedded World Conference, Nuremberg, 2021.

M. Weiser, "Program Slicing," IEEE Transactions on
Software Engineering, Vols. vol. SE-10, no. July 1984, pp.
pp.352-357, 1981.

The MITRE Corporation, "Common Attack Pattern
Enumeration and Classification (CAPEC)," 2007. [Online].
Available: https://capec.mitre.org/. [Accessed 13 Feb 2023].

www.embedded-world.eu

