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Abstract—Data and control flows are essential to software ar-

chitecture and are commonly defined during the design phase. Yet, 

they are rarely verified later during implementation. Instead, most 

verification activities focus on guideline compliance, functional 

tests, and robustness. In this paper, we dive deeper into the topic 

of flow analysis and discuss which methods can be used to reliably 

detect unintended behavior and prevent functional errors, such as 

forbidden communication between processes of different critical-

ity, accidental disclosure of sensitive data, and even algorithmic 

errors. Using concrete examples, we explain the different types of 

flow dependencies and introduce the method of specification-

driven code slicing, which can automatically verify the absence of 

certain unintended flows. This addresses certification require-

ments from automotive engineering ("Freedom from Interfer-

ence"), aerospace (“Data and Control Coupling”), and industrial 

automation ("Restricted Data Flow") by asserting the safety and 

security properties of software applications. The outlined method 

can significantly reduce the number of issues discovered late in 

testing campaigns. 

Keywords—data flow, control flow, interference, static analysis, 

formal verification. 

I.  INTRODUCTION 

Software plays a fundamental role in numerous devices, from 
consumer electronics, industrial controls, and medical devices to 
rail, air, and space technology. Many systems have reached a 
complexity where programming errors are not only possible but 
likely: Statistics suggest that developers typically make 10 to 50 
errors per 1000 lines of code [1]. Many of those errors are caught 
later by checking compliance to coding guidelines and running 
unit tests. However, there is one class of defects that is rarely 
tested and yet can severely impact safety and security properties, 
namely errors in flow dependencies. This paper focuses on this 
less-examined error class and explain which methods and tools 
can be used to eliminate certain flow errors reliably. 

Fundamentally, there are two types of flow dependencies, 
typically occurring in combination: A control (flow) dependency 
(see Figure 1a) exists when the execution of an instruction (here 
y:=12) depends on the value of an expression (here x), and a data 

(flow) dependency (see Figure 1b) exists when the value of an 
expression (z) depends on the value of another (a and b, as well 
as indirectly on read_input).  

The sum of all flow dependencies drives the logical behavior 
of a software. Therefore, flow errors can lead to undesired be-
havior and, as we will demonstrate later – even to crashes. It 
should be noted that such errors cannot be verified by checking 
coding guidelines like MISRA C™ or through robustness test-
ing. The intended behavior is not evident from the source code 
but rather captured in high-level specifications such as software 
design documents. Moreover, even robust, and functionally cor-
rect software can still suffer from flow problems, for example by 
exposing sensitive data and creating a security vulnerability 
(e.g., Heartbleed [2]).  

Verifying proper flow dependencies is essential when pro-
cesses with different levels of criticality shall be segregated. For 
example, in medical devices, it is vital to isolate the logging of 
patient data from the operation of an insulin pump. In a road ve-
hicle, the separation between the audio system and the driver as-
sistance systems is essential. In both cases, unintended interfer-
ences could lead to hazardous outcomes. Therefore, industrial 
standards typically require an analysis of data and control flows 
[3] [4] [5] to obtain evidence of correct implementation. Unfor-
tunately, they provide limited detail regarding which aspects of 
data and control flows shall be verified. This paper aims to draw 
a clearer picture of the demands and utility of flow analysis. 

A. Challenges 

Typical development tools such as compilers, debuggers, and 
unit tests have limited detection capabilities regarding the issues 
mentioned earlier. They can only identify the shallower flow er-
rors and can merely confirm their existence rather than prove 

1 | if (x > 10) then 
2 |     y := 12 
3 | end if 

(a) Control flow dependency 

1 | a := read_input() 
2 | b := 5 
3 | z := (a * b) / 2 

(b) Data flow dependency 

Figure 1: Illustration of the two types of flow dependencies. 
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their absence. To thoroughly identify errors in control and data 
flows, we need tools that operate directly on the code base—
where the semantics remain traceable—and consider the design 
specifications. Such advanced tools are essential for a more ac-
curate and comprehensive error detection process. 

Development environments (e.g., IDE) come to mind for this 
purpose. However, they are inadequate, too. Functionality such 
as reference search (e.g., “Find all References” in Microsoft VS 
Code™) only shows direct access to variables. It may miss tran-
sitive effects like propagation into function parameters and indi-
rect access via pointers ("Alias"). Other information, such as the 
call hierarchy, is not necessarily complete, either, especially in 
the presence of complex constructs like polymorphism and func-
tion pointers. As a result, data and control flows cannot be fully 
tracked and verified in the development environment. 

Another pitfall is Undefined Behavior (UB)–code constructs 
that, by definition of the respective programming language (e.g., 
the C99 standard [6]), can have arbitrary side effects. These can 
create invisible dependencies beyond the semantics of the pro-
gramming language and may cause significant testing difficul-
ties. The example in Figure 2 illustrates such UB. Although var-
iable A is declared as a constant with a value of 42, it unexpect-
edly carries the value 66 at the end of the program. The reason 
is the assignment on line 5, which represents UB. As argc is 
three and thus outside the bounds of buf, a buffer overflow hap-
pens. The value assigned to buf[argc] is actually written to the 
memory area of A, as it is directly adjacent to buf. Hence, an in-
visible dependency exists between the variables argc and A. To 
avoid such semantic gaps, UB must be removed entirely. 

Static code analysis tools can provide deeper insights into the 
code and even identify UB. Moreover, they can identify errors 
in control and data flows like dead branches or writing to local 
variables without further use. Such tools are highly recom-
mended to fix defects early and improve the overall code quality. 
However, they cannot verify flow correctness on their own but 
merely support a manual flow analysis. In the following, we list 
the requirements for reliable and precise verification of control 
and data flows to ensure all these challenges can be addressed. 

B. Requirements for Reliable Flow Analysis 

A method for the reliable analysis of data and control flows must 
fulfil the following requirements: 

• Identify undefined behavior (“no semantic gaps”): 
To avoid invisible data and control flows, UB must be 
identified so the developer can remove it. 

• Soundness (“no missed flows”): Every feasible pro-
gram state must be modeled. This requires, among other 
things, pointer analysis (Alias Analysis) to capture indi-
rect accesses and a semantically complete model of the 
programming language, including its standard library. 

• Precision (“no needless warnings”): Variable values 
and their relations must be calculated as precisely as 
possible. Towards this, a value analysis is necessary, 
which models all operations and expressions, including 
arithmetic, as precisely as possible. 

• Tracking causal chains: Flows should be traceable 
across function calls (Interprocedural Analysis), separa-
ble in overlapping execution paths (Context Sensitiv-
ity), and complete in the presence of multitasking. 

• Qualified: In the context of industrial standards (e.g., 
ISO 26262 [3] or IEC 61508), the tool should be vali-
dated and qualified, so that its outputs can be used to 
claim certification credits. 

 
Tools that meet these requirements are typically called Slic-

ers based on Formal Methods and exist for both model-based 
development (e.g., [7]) and for source code (e.g., [8]). 

II. ANALYSIS APPROACH 

In this section we explain the technology of (sound) Program 
Slicing, which satisfies the methodological requirements dis-
cussed in the previous section. For brevity, we limit the expla-
nation to code level, but the technology has been extended to-
wards higher-level design models (e.g., Simulink [7]), too. 

To conduct a precise, sound, and transitive flow analysis, the 
following two steps are required: 

A. Perform Sound Semantic Analysis: Compute all pos-
sible variable values, flow decisions, and pointer targets 
that are feasible in the program, including instances of 
undefined behavior. 

B. Construction of a Program Dependency Graph: Lev-
erage the data from the previous step to capture transi-
tive flows between all program locations and enable 
end-to-end flow discovery and verification. 

We provide more details on each of the two in the following: 

A. Perform Sound Semantic Analysis 

The first step towards flow verification is to analyze the source 
code for possible control and data flows. This includes the anal-
ysis of variable values (since they drive control flow decisions) 
and interprocedural analysis (callers, parameter values, effects 
of callees, and return values). While many software analysis ap-
proaches exist, only a few satisfy the soundness and precision 
requirements stated in the previous section.  

Abstract Interpretation [9], a member of the family of formal 
verification methods, is a suitable analysis technique for large-
scale software applications. When implemented consistently and 
used correctly, it offers soundness by exhaustively considering 
all possible program states [9, p. 242]. In instances of 

 

 

Figure 2: Undefined behavior may create invisible data and control flows. 
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uncertainty, such as when contextual information is lacking or 
operands are unknown, Abstract Interpretation overapproxi-
mates, i.e., assumes that the possibility in question is feasible. 
To achieve soundness, it must also resolve all pointers (“Alias 
Analysis”), as they can alter variable values and control flows 
indirectly. 

As a beneficial side effect, sound Abstract Interpretation can 
identify when parts of the program are logically unreachable. 
Figure 3 shows that if the value analysis deduces that in3 is 
strictly negative, then the increment y++ on line 16 becomes un-
reachable. Thus, there is no data dependency on line 16 and no 
control dependency on line 14. This information will be lever-
aged later. 

Finally, sound Abstract Interpretation can identify undefined 
behavior. As discussed before, this is a prerequisite to trust the 
semantics of the programming language. More details on that, 
as well as its effects, are given in [10]. 

B. Construct Program Dependency Graph 

Once the sound semantic analysis is complete, the deduced in-
formation is used to transitively chart all data and control flows 
through the entire software. We leverage a method called Pro-
gram Slicing, as proposed by Mark Weiser [11]. It builds a pro-
gram dependency graph (PDG) that captures all feasible control 
and data flows in one view, as shown in Figure 3: Nodes repre-
sent variable reads or writes, and edges represent direct depend-
encies on preceding nodes. Moreover, there are two types of 
edges: a) data flow edges, depicted with dashed lines, and b) 
control flow edges, depicted with solid lines. For example, the 
PDG in Figure 3 shows that out1 on line 18 has a data depend-
ency on the assignment of x on line 8, which in turn has a data 
dependency on in1. Similarly, we can see that out2 has a data 
dependency on the assignment of z, and that z itself has multiple 
data dependencies, which are moreover control-dependent on 
the values of x and in3. Constructing such a graph is straightfor-
ward once semantic analysis has been completed. 

Before we use the PDG for verification means, we can fur-
ther simplify it thanks to sound and precise information from the 
semantic analysis. Since we know that line 16 in Figure 3 is 

unreachable (see previous section), we can safely remove the as-
sociated node in the PDG. This immediately cuts off the control 
dependency in3>=0 and the data dependency to in3. Similarly, 
more edges can be removed if we have precise information about 
pointers. Effectively, this step reduces needless warnings. 

We now have a complete graph that precisely captures data 
and control flow dependencies. Verifying a specific dependency 
becomes a reachability problem, which can be solved with 
standard graph algorithms. This graph can be used in forward 
direction (show downstream impact) or backward direction 
(show influencing parts). To distinguish between data or control 
flows, the according edge type can be removed prior to reacha-
bility analysis. 

In the next section, we explain how this analysis approach 
can be used in development workflows. 

III. WORKFLOW IN PRACTICE 

The technology can be used in two fundamentally different 
ways, namely: 

A. Interactive exploration, and 

B. specification-driven flow verification.  

Both approaches differ in application areas and workflows. 

A. Interactive Exploration 

Most users starting with data- and control flow analysis have no 
specific expectations regarding the results. They focus on dis-
covering existing flows and understanding the program logic. 
One obvious scenario is to better understand legacy software.  

Typically, explorative use starts by selecting start or end 
points. The computed flows from/to these points are highlighted 
in the design artifact. Examples are shown in Figure 4 for both 

 
Figure 4: Interactive, explorative dependency analysis on models and code. 

 
Figure 3: Source code and its Program Dependency Graph. 
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model and code. The user can interactively walk through the 
software and understand the logical coupling between various 
program locations and variables. 

Exploration can also go beyond discovery. It can be applied 
for impact analysis (downstream effects) or taint analysis (up-
stream influences). This can be leveraged to assess the criticality 
of a certain variable, component, or signal in the context of the 
whole software. Assume, for example, that the flow analysis 
shows that a variable can have downstream effects on the brak-
ing system of a vehicle. The user can now deduce that this vari-
able is safety-critical and consider implementing additional pro-
tective code. Similarly, if a security problem appears in one part 
of the software, explorative use can help identifying the potential 
damage that follows. 

These are just some of many possible use cases for interac-
tive exploration. From now on, we will focus more on the spec-
ification-driven analysis. 

B. Specification-driven Verification 

The interactive exploration reliably captures all flows, yet it is 
still “blind” to the specification. Thus, it cannot identify unin-
tended behavior and wrong implementations. We address this 
limitation by adding the notion of (un)expected flows as an anal-
ysis input. The analysis can automatically prove or disprove 
these, thereby identify erroneous flows in the code. This relieves 
developers from the burden of manually exploring the model or 
code. Instead, they only will focus on deviations, which will be 
explained to them with specific counterexamples. If flows are 
proven to be compliant with the expectation, no further steps are 
required, and certification credits can be claimed.  

The specification-driven analysis generally consists of the 
following three steps: 

1. Define (un)expected flows: First, declare mandatory or 
forbidden flows in a machine-readable format (e.g., 
XML file). Typically, this is done pairwise (A must not 
influence B) or group-wise (e.g., the set of critical vari-
ables must have no data dependency on the set of uncrit-
ical variables). 

2. Run flow analysis: The analysis is executed as de-
scribed in Section II. The specifications from the previ-
ous step are converted into reachability objectives and 
evaluated on the dependency graph. For compliant ob-
jectives, no further action is necessary. For each unex-
pected yet feasible flow, the analysis generates a coun-
terexample: one complete trace exposing the unex-
pected flow. Each flow that is expected yet absent is 
flagged for further review. 

3. Review of deviations: Since the analysis is based on 
formal methods (see Section II), only deviations from 
expectation need review. In case of an unintended flow, 
the counterexample (see “read of username,” orange in 
Figure 1) makes debugging easy and efficient. For miss-
ing flows (see “write to calibrated,” red), counterexam-
ples are not available for obvious reasons. The reviewer 
will have to analyze the cause of the missing flow. 

 

The specification step can be automated for some well-
known patterns (e.g., LDAP injection, missing input validation), 
requiring no additional effort for standard flows. However, the 
real power of this specification-driven usage comes with custom 
patterns that are typically known from the design but never 
checked. One example is components with different safety lev-
els (e.g., ASIL in ISO 26262 [3]). Components with higher crit-
icality must not depend on lower-criticality components (“Free-
dom from Interference”). This objective allows to automatically 
generate specifications for unexpected flows. 

This specification-driven verification is well-suited for CI 
pipelines, since it generates a list of deviations to be reviewed 
alongside the findings of ordinary guideline checkers. 

IV. EXAMPLES 

To illustrate the specification-driven analysis approach, we use 
a temperature monitoring program, shown in Figure 6. It reads a 
sensor, calibrates the measurement value, and sends an email no-
tification if the temperature becomes too high. We want to verify 
the following objectives for the control and data flows:  

1. Measurement values are unaffected by user inputs. 

2. The measurement result is always calibrated. 

3. Confirm the absence of exploitable security vulnerabil-
ities in the program. 

We will analyze these objectives using Polyspace Code 
Prover [8], a sound abstract interpretation tool. Polyspace Code 
Prover enables users to prove the absence of undefined behavior 
and verify the control and data flows in C/C++ code. 

 
 

 
 

Figure 5: Results of a specification-driven flow analysis and one deviation. 
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A. Absence of Undefined Behavior 

As stated earlier, the absence of undefined behavior is a prereq-
uisite for control and data flow analysis. A first verification run 
exposes undefined behavior on line 32. The e-mail address pro-
vided by the user could be too long, causing a buffer overflow 
and crashing the program. It could even inject malicious code 
into our program and change the control flow.  

We can fix this potential undefined behavior by replacing 
sprintf with snprintf. Re-running the verification on the fixed 
code confirms the absence of undefined behavior (Figure 7). We 
can now rely on the programming language’s semantics. 

B. Proof of Flow (in)dependency 

Our first verification objective (“user input must not affect meas-
urement data”) is particularly interesting, since it is an example 
of interference analysis from various safety standards (“Free-
dom from Interference” from ISO26262 [3], “Data and Control 
Coupling” from DO-178C [4], and “Restricted Data Flow” from 
IEC 62443 [5]). The first step towards verification is specifying 
an expected data dependency as “(source) username must not im-
pact (sink) temp.” Subsequently, the tool can automatically ana-
lyze the data flows and identify deviations. For our example 

program, we get a confirmation for the absence of any interfer-
ence (green result in Figure 5). Since the tool is sound, we have 
successfully verified our objective. 

For the second objective, we expect to always have a de-
pendency between temp and calibrated. We provide and verify 
the specification “calibrated must impact temp.” The red result 
in Figure 5 reveals a programming error; the assignment on line 
22 has accidentally been commented out. After fixing the issue, 
the tool finds another–yet intended–dependency on line 40. 
Hence, we have verified all expected and specified functional 
dependencies. 

C. Detection of Security Vulnerabilities 

The third objective relates to the cybersecurity properties of our 
program: Are there any control and data flows that an attacker 
could exploit?  

As a first step, we run a taint analysis. It automatically iden-
tifies data controlled by external actors and traces its usage to 
critical locations in the code. The result (Figure 8) shows that 
input validation is missing, which could allow a command injec-
tion. The user input username is not checked and blindly passed 
(indirectly) to the system call on line 33. Even though we have 
already limited the inputs with snprintf, an attacker could inject 
additional commands like “a@b.com; shutdown”. We can elimi-
nate this vulnerability by rejecting all inputs that are not a syn-
tactically valid e-mail address (not shown here for brevity). 

Finally, security vulnerabilities can also mean disclosing 
sensitive data (i.e., a confidentiality breach). In our example, we 
can consider the username as sensitive data and verify the spec-
ification “username must not flow into function logger”. Our 
analysis falsifies this objective, and the counterexample (Figure 
9) shows a trace that allows for writing the username to the log-
file.  

After the straightforward fix and rerunning the analysis, all 
three objectives have been successfully verified. Our program is 
now robust (no undefined behavior), measures the temperature 
reliably (absence of unwanted flows), and free from common 
security vulnerabilities. 

V. DISCUSSION 

The previous examples illustrate that an analysis of data and 
control flows can help identifying logical defects in the applica-
tion, well beyond what coding guidelines and functional tests 
can do. In this section, we discuss the strengths and weaknesses 
of the described approach and where it is used best.  

Figure 7: Prerequisite for flow analysis – absence of undefined behavior. 

 

 
Figure 8: Tainted data flow from external source. 

 

 
Figure 6: Example program code. 
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The presented specification-driven flow analysis is suitable 
for safety- and security use cases, in particular to support certi-
fication and qualification activities for critical software. Since it 
is sound, the underlying analysis method exhaustively identifies 
and tracks data and control flows. By design, the analysis may 
consider a superset of all feasible flows, yet never a subset. This 
makes it a safe method to demonstrate the absence or independ-
ence of certain data- and control flows, and thereby directly ad-
dresses requirements from DO-178C (“Data and Control Cou-
pling [4]), ISO 26262 (“Freedom From Interference” [3]), IEC 
62443 (“Restricted Data Flows” [5]) and other safety and secu-
rity standards. 

Conversely, this approach is suboptimal when the objective 
is to prove the presence of a mandatory flow. Consider the situ-
ation in Figure 10, where the value of valve_pos shall depend on 
the value of button_pressed. The described approach can find a 
flow dependency between these two variables. However, it can 
also detect the conditional control dependency on the safety 
switch. This code permits a scenario where the button never in-
fluences the valve position due to the safety switch being per-
manently false. Only in two specific circumstances exists a sim-
ple answer to the verification objective: If the predicate is always 
true, then the method can confirm the presence of the mandatory 
data flow. On the other hand, if the condition is always false, 
then there is no feasible flow, and the method can disprove the 
expectation. In all other cases, it can only provide a (counter)ex-
ample and leave it to the reviewer to check whether the condi-
tions therein satisfy the mandatory flow expectation.  

A. Threats to Validity 

There are several potential systematic errors that may refute the 
correctness or completeness of the analysis results. However, 
most of them can be reduced with reasonable effort: 

1. Missing specification: The analysis can only verify what 
has been (implicitly or explicitly) specified, and hence 
cannot verify the correctness of all data and control 
flows. This is a fundamental limitation of all code analy-
sis methods and is not specific to our approach. To reduce 
the risk of missing specifications, we recommend auto-
matically importing design specifications, such as differ-
ent safety/security levels and their implied independence. 

2. Incorrect specification: Errors within the specification 
itself can result in incorrect outcomes. To mitigate such 
risks, the analysis tool can detect those that are incon-
sistent with the code. However, certain classes of mis-
specification may escape automatic detection due to a 
lack of understanding of the intention. Implementing a 
review process for the specifications can help uncover 
such issues. Additionally, functional testing can serve as 
a complementary measure. 

3. Unfixed undefined behavior: As explained in section 
I.A., undefined behavior can introduce invisible data and 
control flows. A sound analysis tool can identify it or 
prove its absence. By fully removing the identified unde-
fined behavior, users can mitigate this risk. 

4. Incomplete analysis perimeter: External interactions 
not included in the analysis–such as unanalyzed pro-
cesses, assembly code, or the use of libraries where no 
source code is available–may introduce additional flows. 
While static code analysis is still effective, it uses “stubs” 
to represent the missing parts. These are functions with-
out a visible definition and are presumed to have no im-
pact on the known flows. Consequently, a flow could be 
incorrectly deemed absent when a stub is involved. To 
mitigate this risk, the tool should warn developers and 
providing them the opportunity to define the flows 
through stubs manually. Moreover, the tool should in-
clude “smart stubs” for functions from standard libraries 
to enable sound modeling of the effects of functions like 
memcpy. 

5. Incorrect analysis assumptions: The correctness of 
static analysis depends on the analysis setup and assump-
tions, for example, on the modeled compiler and run-time 
environment, but also on the range of inputs considered 
feasible. For a deeper discussion of these assumptions, 
please refer to [10]. To mitigate the risk of wrong analy-
sis assumptions, we recommend a) using the tool’s auto-
matic analysis configuration (e.g., tracing of the build 
command, compiler detection) and b) minimizing the as-
sumptions, especially regarding ranges and validity of 
external inputs. This is also beneficial for robustness and 
cybersecurity properties, as discussed in [10]. 

6. Correctness of the analysis tool: The analysis tool itself 
is a software and thus might have defects that may lead 
to wrong outputs. This can be mitigated by a) choosing a 
sound analysis tool, since it leverages mathematical mod-
els that permit no false negatives and b) only using tools 
that are validated and/or qualified, i.e., checked by certi-
fication bodies or validation tests. 

The aforementioned tool-related mitigation techniques are im-
plemented in Polyspace Code Prover [8], to reduce systematic 
errors and to reduce the risk of incomplete results. 

  

4 | char button_pressed = read_reg(0xF4); 
5 | if (safety_switch) { 
6 |     valve_pos = button_pressed; 
7 | } 

Figure 10: Is there a definitive flow dependency between valve_pos and  

button_pressed? 

 
Figure 9: Data flow leaking sensitive data. 
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VI. CONCLUSION 

Correct data and control flows are crucial for safety and security. 
Yet, their verification requires going beyond static code analy-
sis. It necessitates checking the flows against a logical specifica-
tion to detect unwanted interactions within the implementation. 
Specification-driven flow verification offers a more profound 
analysis than standard coding guidelines, robustness testing, or 
requirement-based testing with a debugger. 

The described approach can be applied either exploratively, 
for understanding legacy systems and assessing modifications, 
or automatically, to enforce a correct-by-design approach and 
detect logical errors. Our proposed workflow includes (1) ex-
tracting expected flows from design specifications, (2) analyzing 
to confirm or refute these expectations, and (3) examining any 
discrepancies. Automation is possible for common patterns, 
such as input validation and SQL injection, while application-
specific flows require manual specification. 

To obtain correct results and keep the verification process 
efficient, we suggest (1) eliminating undefined behavior, (2) us-
ing capable code analysis tools to verify standard flow patterns, 
and (3) defining and verifying custom flow specifications. Ad-
vanced code analysis tools can support all three steps. Although 
not covered here, other uses of this methodology include identi-
fying prohibited function calls, analyzing configuration param-
eters, and ensuring data privacy. 

In summary, flow analysis can identify critical defects early 
in the development process, surpassing traditional robustness 
and compliance testing and preventing complex bugs during 
later stages. It helps users verify flow specifications, thereby 
helping to demonstrate the absence of unintended interferences 
and side effects. 
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