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Abstract—The ISO 26262 standard for functional safety 

provides high-level guidance on the development of automotive 

electronics and electrical systems, including embedded software. At 

MathWorks we have observed that the room for interpretation of the 

standard can be both useful and burdensome. In this work we will 

contribute to closing this gap. We will provide guidance for Model-

Based Design development projects, particularly how to address 

challenges such as freedom from interference, testability at different 

software architecture levels, and reusability. These best practices will 

be addressed by means of modeling patterns and will lay the 

foundation for more streamlined software verification. 
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I. INTRODUCTION  

This paper highlights best practices around developing ISO 

26262 compliant software. These will be illustrated with 

Simulink models for architecture and design. Note that we will 

focus on leveraging concepts of Model-based Design rather 

than introducing Model-based Design itself. 

For software development in the context of ISO 26262:2018-6 

[1] OEMs and suppliers need to be able to provide 

documentation that the system has been developed, verified and 

tested according to state of the art methodologies. It is crucial 

to think through possible design choices for the algorithm’s 

architecture as early as possible because these choices can have 

a substantial impact on the efficiency of the development 

organization, reusability of the software, and testability of the 

software. 

MathWorks provides guidance documents, as part of an IEC 

certification kit, which can be used to demonstrate compliance 

with the portions of the ISO 26262 standard that are applicable 

to Model-Based Design. The kit provides a high-level workflow 

that can be referenced, tailored, and extended as needed, as well 

as support for tool qualification [2], thus addressing ISO 

26262:2018-8 [3] and helping to reduce efforts for tool 

qualification efforts significantly.  

By adopting an appropriate modeling style and architecture it is 

possible to greatly reduce the work needed to meet key aspects 

of the standard such as freedom from interference. MathWorks 

Consulting Services has developed best practices during 

consulting engagements with various automotive companies. 

Throughout this paper, we provide suggestions on modeling 

practices that can be used to segment algorithms to reduce 

verification and deployment efforts when adhering to ISO 

26262-6 and using Model-Based Design. These best practices 

can be classified into the following categories that match with 

the next three sections: model architecture in section 2, signal 

routing and definition in section 3, and code generation 

configuration in section 4. Finally, section 5 provides a 

summary and future directions. 

 

II. MODEL ARCHITECTURE 

One of the first decisions during algorithm development in 

Simulink involves the general model architecture. Decisions at 

this stage affect software testability, software reusability, unit 

and integration testing methods, ease of software integration, 

and software segmentation for freedom from interference. 

The best practices center around areas that make ISO 26262 

compliance easier while increasing efficiency in the validation, 

verification, and documentation phases. 

A. Using Model Reference for Unit-Level Models 

One of the main focal points in part 6 of ISO 26262 is the 

workflow for developing, validating, and verifying software 

units. Software units are intended to be the smallest testable 

parts of an application that must be individually tested for 

proper operation. To maintain traceability, requirements will be 

mapped to and/or within these individual software units, and 

requirements-based test cases will be built to extensively test 

the software unit. Therefore, the modeling construct used for 

unit development needs to consider various aspects, including 

testability, code generation, complexity, testing workflow, 

traceability, and documentation. These aspects point to reliance 

on model references as the primary modeling pattern for unit 



development. Model references have multiple characteristics 

that are conducive to the desired outcome including: 

• Code generation – There is a one-to-one mapping from 

model reference to source files generated. 

• Reusability – Model references can be used in multiple 

places throughout an integration model. 

• Testability – Model references are ideal for test 

harness construction. 

• Team collaboration – Model references enable parallel 

development across developers and simplify the 

overall configuration management and version control 

processes. 

B. Strategy for Grouping Units into Features 

When integrating units and grouping them to features, one can 

choose from various types of modeling constructs to add model 

hierarchy such as virtual subsystems, atomic subsystems, model 

references, and library blocks. 

For ISO 26262, there is flexibility on how these unit models can 

be grouped under their respective ASIL. The recommendation 

from the previous section added the constraint that model 

reference should be used for the unit-level algorithm. However, 

for grouping of units, either subsystems or model reference can 

be used. Some of the tradeoffs to consider are the number of 

model references that need to be managed and how firm a 

modeling boundary is required at a feature level. The following 

items need to be considered when determining a feature model 

segmentation strategy: 

• Generated code file and functionality grouping 

• Parallel feature development by multiple developers 

• The overhead associated with model reference files 

• The ease of visibility for feature grouping in the design 

At this intermediate level of the model between unit and the top 

level, the choice of modeling constructs is up to the 

organization’s modeling guidelines and preferences.  

C. Spliting ASIL and QM Levels at the Top Level of the Model 

One key concept in ISO 26262 centers around freedom from 

interference. ISO 26262 has five distinct safety levels (Quality 

Management (QM), and ASIL A–D) that can be used to classify 

system- and software-level functionality based on the 

functional safety aspects of the system. Electrical and electronic 

systems that are following ISO 26262 may have components at 

different ASILs. For example, a component that reports out 

non-critical diagnostic data may be classified as a QM 

component, whereas a component that could impact the 

vehicle’s ability to brake, may be classified to a higher-level 

ASIL component due to the high degree of hazard/injury risk if 

a failure occurs. 

A system with multiple ASIL components will benefit from an 

architecture that efficiently segments these algorithms into 

separate containers. The benefit will be seen for two reasons: 1. 

Each ASIL can have different development, validation, and 

verification requirements. 2. Separating and segmenting ASILs 

enables freedom from interference.  

Since the various ASILs will be split, we recommend choosing 

a modeling construct to aid in that segmentation. Using model 

references ensures that when the algorithm is deployed, there 

will be a firm boundary at each components’ border. Therefore, 

we would split the top level of the system-level model into 

multiple model references with each model reference 

representing a separate component with different ASIL. Note 

that in this case, due to code generation configuration settings 

(see the Code Generation Configuration section for detail), the 

system-level model is for simulation only, and code generation 

can only be done separately based on ASIL. Generating code at 

the unit level and then integrating it is another option. However, 

generating code at as high a level as possible reduces the 

amount of overhead during code integration. 

By using a model reference for each ASIL or even more 

generically, whenever freedom from interference is needed, 

separate functions and source files will be generated for each 

model reference. By following this and the code generation 

configuration best practice, each segmented partition will have 

its own source files, shared utilities, and data definitions, which 

will make it easier to achieve freedom from interference 

between the different sections of the algorithm. Figure 1 

demonstrates how a model could hierarchically be split based 

on ASIL. 

 

Fig 1: Model hierarchy based on ASIL. 

D. Eliminating Algorithmic Content at the Integration Level 

ISO 26262 has the notion of multiple testing levels in the 

representative architecture, including unit level, integration 

level, and system level. Typically, a software unit must go 

through various levels of testing rigor based on the targeted 

ASIL. For example, ASIL D may require full modified 
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condition and decision coverage (MCDC), whereas for ASIL A 

or B, condition and decision coverage may be acceptable. 

Because of this, units are the only place where algorithmic 

functionality should be implemented. If algorithmic content 

occurs at the integration or system level of the model, it can be 

more difficult to achieve full coverage of the design. For this 

reason, it is recommended to ensure that no algorithm content 

occurs outside of unit-level models (see Figure 2). 

 

 

Fig 2: Avoiding algorithm content outside of the unit. 

 

E. Using Model Metrics to Monitor Unit Complexity 

Many organizations realize late in the development cycle that 

their algorithms will be difficult to validate to the level of 

coverage that ISO 26262 recommends. This typically stems 

from the lack of architectural consideration at design time and 

management of unit-level size and complexity during 

development. One methodology that can alleviate this issue is 

to set unit size metric thresholds for the entire development 

organization. These thresholds can include maximum number 

of inputs and outputs per unit, reusable libraries, cyclomatic 

complexity or number of elements. To manage the unit’s 

complexity, these metrics should be reviewed during the model 

review process of the development cycle. This will enable 

visibility of the complexity and scope of how the algorithm has 

been designed during the development process. A model 

Metrics Dashboard, as included in Simulink Check can make 

this process easier. This dashboard provides metrics for total 

block count, MATLAB lines of code (LOC), Stateflow LOC, 

model complexity, number of blocks, and other metrics to the 

modelers and model reviewers. The dashboard supports the 

design workflow by continuously monitoring models to ensure 

that they are not being divided into units that are too small 

(increasing management complexity) or too large (unable to be 

easily tested and difficult to reuse).  

Threshold values are often an area of debate. This is because 

the model complexity usually cannot be measured from a single 

aspect of the model. It is often necessary to analyze multiple 

metrics to make meaningful decisions. For example, one 

Stateflow chart can have very high cyclomatic complexity 

while its block count is only one. The recently published paper 

Model Quality Objectives for Embedded Software 

Development with MATLAB and Simulink [2], from 

MathWorks and a group of automotive companies (Delphi 

Technologies, Bosch, PSA, Renault, and Valeo) provides 

guidance on metrics and thresholds. For example, model 

cyclomatic complexity should be 30 or lower, and the number 

of model elements should be less than 500. Specific threshold 

values may be subject of discussions among OEM and 

suppliers. 

 

III. INTERFACE DEFINITION AND DATA EXCHANGE 

Part 6 of ISO 26262:2018 has multiple considerations that 

address interface complexity and data exchange between units 

and components. For example:  

• Table 3 - 1b: Restricted size and complexity of 

software components  

• Table 3 - 1c: Restricted size of interfaces  

• Table 7 - 1g: Data flow analysis  

• Table 7 - 1k: Interface tests  

To fulfil these requirements and to also address freedom from 

interference, it is important to determine architectural strategies 

for how data will be exchanged between units, components, and 

different ASILs. This section provides four best practices aimed 

at managing interface complexity and data exchange. 

A. Grouping Bus Signals by ASIL, Feature, and Rate 

ISO 26262 Part 6 Table 7 - 1g recommends that development 

teams perform data flow analysis. Data flow analysis is 

necessary to understand how signals are passed through a 

software algorithm and down to the unit level. This type of 

analysis can spot areas where signal requirements are 

contradictive or where various signals should not be directly 

used based on characteristics of the provider. To perform this 

analysis at the model level, a bus hierarchy strategy must be 

developed to make it easier to understand where the signal is 

coming from and what the characteristics of the signal are. Not 

specifying how bus signals should be grouped hierarchically, 

can result in the following issues:  

• Inefficient bus segmentation 

• Inconsistent bus grouping from developer to developer  

• Modeling difficulty when splitting and recreating 

buses  

• Inefficient code generation 

Just as model architecture requires a top-down design approach, 

the same is true for bus hierarchy. To better manage the ASIL, 

signals should be grouped based on task rate and ASIL in the 

bus hierarchy (see Figure 3). By grouping these signals based 

on ASIL, it will be easier to determine the provider of a signal 

and determine if the signal is being used in a unit of a higher 

ASIL.  

 

Fig 3: Grouping signals in a bus hierarchy. 



B. Passing Only Necessary Signals to Units 

Table 3 and Table 7 of ISO 26262 Part 6 have important 

suggestions on unit-level interfaces and data exchange. These 

two tables mention that the size and complexity of software 

components and interfaces should be reduced where possible. 

Also, during the verification process, users should perform 

interface tests. If unused variables are passed down to a unit-

level model, additional testing will be necessary to ensure that 

these signals do not have an impact on the unit. To alleviate this 

concern, reducing the inputs that are passed to the unit level can 

help. Splitting bus signals prior to entering a unit-level model 

facilitates this (see Figure 4).  

 

 

Fig 4: Splitting bus signals entering a unit-level model. 

 

C. Placement of Signal and Parameter Objects  

The high-level use case for signal and parameter objects is to 

define the interface between the model and base software. In 

such a use case, parameter objects are typically used for 

specifying calibration values and placed inside model blocks 

such as Gain and Lookup Table blocks. The usage of signal 

objects is more complex, but it usually is associated either with 

internal signals to support calibration activities or with root 

input and output ports. It is important to note that the interface 

to the model reference block does not contain signal objects. 

This is because signals at the boundary of the unit level are 

considered internal interface signals. This also assumes that the 

code is being generated at the highest ASIL partition as 

mentioned in section II.C. For the internal interface signals, it 

is best to let the code generator, e.g. Embedded Coder define 

those signals based on its internal optimization algorithms. Data 

type information, however, does need to be explicitly defined 

as part of the Port block configuration at model reference 

boundaries, as shown in Figure 5. 

 

Fig 5: Defining data type for a port.  

 

This best practice restricts the placement of interface signal 

objects to the code generation model boundaries. It also ensures 

that when code is generated for each ASIL, the root-level output 

ports will point to the corresponding interface function in the 

other ASIL section.  

The storage class used for the signal and parameter objects can 

be set based on the software architecture and coding practices. 

The exception will be the protection needed for data exchange 

between ASIL models or partitioning as required by freedom 

from interference. 

D. Data Exchanged Protection Between ASILs  

One consideration when code for each ASIL is generated 

separately is that a protection method is needed to exchange 

data between each ASIL. Multiple strategies exist using storage 

classes on the ASIL sections’ root-level input and output ports. 

One prevalent method is to use a storage class that has get and 

set access functions for the data. By using get and set access 

functions, it is possible to add more protection to these 

interfaces so that only appropriate software components are 

accessing data (see Figure 6 and Figure 7). 

 

Fig 6: GetSet storage classes used on the root-level input ports 

and the corresponding generated code. 

 

 

Fig 7: Storage class configuration ensuring that the Get and 

Set APIs match between ASILs.  

 

It is important to note that the GetSet storage class objects only 

provide an entry point for the interface protection. The actual 

implementation of the protection is typically done through low-
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level software layers implemented by hand coding, which can 

be easily integrated using the GetSet storage class. 

IV. CODE GENERATION CONFIGURATION  

Once the model has been developed according to the best 

practices listed above, there are still code generation 

configuration settings that need special attention to achieve 

objectives set forth by ISO 26262. This section provides best 

practices for code generation configuration setting with respect 

to code placement and separation of shared utility files. Again, 

the configuration listed below assumes the previous best 

practices have been followed.  

A. Code Placement Strategy  

Freedom from interference is necessary to ensure that if there is 

an issue with one section of the system at an ASIL, it will not 

impact functionality at a separate ASIL. For example, if a QM 

or ASIL A component has an issue or a failure occurs, the 

design should segment this functionality away from 

functionality that is ASIL D to ensure that the ASIL D 

functionality can continue operating. In embedded systems, one 

type of fault that is a concern is if portions of the application 

have access to sections of memory or functions that they should 

not have access to. One way to address this concern is to 

separate the functionality into distinct memory sections or cores 

of a microprocessor. This can be done by telling the compiler 

into which section each variable, function, or file should be 

placed. Figure 8 demonstrates how the application could be 

separated.  

 

Fig 8: Segmenting the system architecture to ensure freedom 

from interference.  

 

Another technique is to split various ASIL and QM levels into 

separate memory sections. Splitting the memory sections 

alleviates some concerns with various ASILs unintentionally 

interacting with each other, such as a function within the QM 

software component (SW-C) writing to a protected ASIL RAM 

location. To configure this, memory sections can be selected in 

the configuration options as shown in Figure 9. This method 

does not have to be used, but it does simplify the overall 

workflow. 

 

Fig 9. Configuring parameter settings for memory sections. 

B. Different Name Tokens for Shared Utilities  

Embedded Coder generates common utility files known as 

shared utilities. These files are basic functions that are used 

across the code generation model. This method presents an 

issue in a safety-related application because there will not be 

any distinctions between the sources of the shared utility files. 

To compile code into a signal application with the segmentation 

concept, shared utilities must be generated and allocated based 

on their ASIL. This can be done the through the shared utilities 

identifier format option in the code generation configuration 

(see Figure 10).  

 

Fig 10: Configuring shared utility settings. 

 

With the above settings, one can create the generated shared 

utility with a unique identifier that is a function of the ASIL. 

For example, the shared utility for the Lookup Table block 

when configured based on the above QM suffix is shown in 

Figure 11.  



Fig 11: Shared utility configured for QM. 

V. SUMMARY AND FUTURE WORK

The findings presented in this paper are best practices created 

through multiple MathWorks consulting engagements. These 

best practices are proven enablers to adoption of ISO 26262. 

However, following these best practices does not guarantee ISO 

26262 compliance because they address a subset of all ISO 

26262 requirements, and each application has unique needs.  

Future work is underway in applying the above best practices 

for AUTOSAR standards [5,6]. Fortunately, AUTOSAR 

facilitates concepts presented in this work so that many or most 

of the topics discussed in the previous sections can be mapped 

directly onto AUTOSAR concepts. For addressing the system-

level requirements of ISO 26262, System Composer [7] can be 

leveraged for modeling and simulation and to help users 

meeting requirements of ISO 26262:2018-4 [8] and ISO 

26262:2018-9 [9]. 
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