@ embeddedworld=o=0

Exhibition&Conference
it's a smarter world

Planning Software Architecture and Modeling
Patterns for 1SO 26262 Compliance

Tjorben GroRt, Jason Moore?, John Lee?
1: The MathWorks GmbH, Aachen, Germany
2: The MathWorks Inc, Natick (MA), USA

Abstract—The 1SO 26262 standard for functional safety
provides high-level guidance on the development of automotive
electronics and electrical systems, including embedded software. At
MathWorks we have observed that the room for interpretation of the
standard can be both useful and burdensome. In this work we will
contribute to closing this gap. We will provide guidance for Model-
Based Design development projects, particularly how to address
challenges such as freedom from interference, testability at different
software architecture levels, and reusability. These best practices will
be addressed by means of modeling patterns and will lay the
foundation for more streamlined software verification.

Keywords—ISO 26262; functional
modeling; architecture; Model-Based Design;

safety; automotive;

l. INTRODUCTION

This paper highlights best practices around developing 1SO
26262 compliant software. These will be illustrated with
Simulink models for architecture and design. Note that we will
focus on leveraging concepts of Model-based Design rather
than introducing Model-based Design itself.

For software development in the context of SO 26262:2018-6
[1] OEMs and suppliers need to be able to provide
documentation that the system has been developed, verified and
tested according to state of the art methodologies. It is crucial
to think through possible design choices for the algorithm’s
architecture as early as possible because these choices can have
a substantial impact on the efficiency of the development
organization, reusability of the software, and testability of the
software.

MathWorks provides guidance documents, as part of an IEC
certification Kit, which can be used to demonstrate compliance
with the portions of the 1ISO 26262 standard that are applicable
to Model-Based Design. The kit provides a high-level workflow
that can be referenced, tailored, and extended as needed, as well
as support for tool qualification [2], thus addressing ISO
26262:2018-8 [3] and helping to reduce efforts for tool
qualification efforts significantly.

By adopting an appropriate modeling style and architecture it is
possible to greatly reduce the work needed to meet key aspects
of the standard such as freedom from interference. MathWorks
Consulting Services has developed best practices during
consulting engagements with various automotive companies.
Throughout this paper, we provide suggestions on modeling
practices that can be used to segment algorithms to reduce
verification and deployment efforts when adhering to 1SO
26262-6 and using Model-Based Design. These best practices
can be classified into the following categories that match with
the next three sections: model architecture in section 2, signal
routing and definition in section 3, and code generation
configuration in section 4. Finally, section 5 provides a
summary and future directions.

1. MODEL ARCHITECTURE

One of the first decisions during algorithm development in
Simulink involves the general model architecture. Decisions at
this stage affect software testability, software reusability, unit
and integration testing methods, ease of software integration,
and software segmentation for freedom from interference.

The best practices center around areas that make 1SO 26262
compliance easier while increasing efficiency in the validation,
verification, and documentation phases.

A. Using Model Reference for Unit-Level Models

One of the main focal points in part 6 of ISO 26262 is the
workflow for developing, validating, and verifying software
units. Software units are intended to be the smallest testable
parts of an application that must be individually tested for
proper operation. To maintain traceability, requirements will be
mapped to and/or within these individual software units, and
requirements-based test cases will be built to extensively test
the software unit. Therefore, the modeling construct used for
unit development needs to consider various aspects, including
testability, code generation, complexity, testing workflow,
traceability, and documentation. These aspects point to reliance
on model references as the primary modeling pattern for unit

www.embedded-world.eu

development. Model references have multiple characteristics
that are conducive to the desired outcome including:

e Code generation — There is a one-to-one mapping from
model reference to source files generated.

e Reusability — Model references can be used in multiple
places throughout an integration model.

e Testability — Model references are ideal for test
harness construction.

e Team collaboration — Model references enable parallel
development across developers and simplify the
overall configuration management and version control
processes.

B. Strategy for Grouping Units into Features

When integrating units and grouping them to features, one can
choose from various types of modeling constructs to add model
hierarchy such as virtual subsystems, atomic subsystems, model
references, and library blocks.

For ISO 26262, there is flexibility on how these unit models can
be grouped under their respective ASIL. The recommendation
from the previous section added the constraint that model
reference should be used for the unit-level algorithm. However,
for grouping of units, either subsystems or model reference can
be used. Some of the tradeoffs to consider are the number of
model references that need to be managed and how firm a
modeling boundary is required at a feature level. The following
items need to be considered when determining a feature model
segmentation strategy:

Generated code file and functionality grouping
Parallel feature development by multiple developers
The overhead associated with model reference files
The ease of visibility for feature grouping in the design

At this intermediate level of the model between unit and the top
level, the choice of modeling constructs is up to the
organization’s modeling guidelines and preferences.

C. Spliting ASIL and QM Levels at the Top Level of the Model

One key concept in 1SO 26262 centers around freedom from
interference. 1SO 26262 has five distinct safety levels (Quality
Management (QM), and ASIL A-D) that can be used to classify
system- and software-level functionality based on the
functional safety aspects of the system. Electrical and electronic
systems that are following 1SO 26262 may have components at
different ASILs. For example, a component that reports out
non-critical diagnostic data may be classified as a QM
component, whereas a component that could impact the
vehicle’s ability to brake, may be classified to a higher-level
ASIL component due to the high degree of hazard/injury risk if
a failure occurs.

A system with multiple ASIL components will benefit from an
architecture that efficiently segments these algorithms into
separate containers. The benefit will be seen for two reasons: 1.
Each ASIL can have different development, validation, and

verification requirements. 2. Separating and segmenting ASILs
enables freedom from interference.

Since the various ASILs will be split, we recommend choosing
a modeling construct to aid in that segmentation. Using model
references ensures that when the algorithm is deployed, there
will be a firm boundary at each components” border. Therefore,
we would split the top level of the system-level model into
multiple model references with each model reference
representing a separate component with different ASIL. Note
that in this case, due to code generation configuration settings
(see the Code Generation Configuration section for detail), the
system-level model is for simulation only, and code generation
can only be done separately based on ASIL. Generating code at
the unit level and then integrating it is another option. However,
generating code at as high a level as possible reduces the
amount of overhead during code integration.

By using a model reference for each ASIL or even more
generically, whenever freedom from interference is needed,
separate functions and source files will be generated for each
model reference. By following this and the code generation
configuration best practice, each segmented partition will have
its own source files, shared utilities, and data definitions, which
will make it easier to achieve freedom from interference
between the different sections of the algorithm. Figure 1
demonstrates how a model could hierarchically be split based
on ASIL.

QA
H

0190

3 b
£

0 100
I
-+ x
3 b
a.%a 1
& i
L
I .1
i i
LR LR

i i
il

Fig 1: Model hierarchy based on ASIL.

D. Eliminating Algorithmic Content at the Integration Level

ISO 26262 has the notion of multiple testing levels in the
representative architecture, including unit level, integration
level, and system level. Typically, a software unit must go
through various levels of testing rigor based on the targeted
ASIL. For example, ASIL D may require full modified

condition and decision coverage (MCDC), whereas for ASIL A
or B, condition and decision coverage may be acceptable.
Because of this, units are the only place where algorithmic
functionality should be implemented. If algorithmic content
occurs at the integration or system level of the model, it can be
more difficult to achieve full coverage of the design. For this
reason, it is recommended to ensure that no algorithm content
occurs outside of unit-level models (see Figure 2).

Fig 2: Avoiding algorithm content outside of the unit.

E. Using Model Metrics to Monitor Unit Complexity

Many organizations realize late in the development cycle that
their algorithms will be difficult to validate to the level of
coverage that ISO 26262 recommends. This typically stems
from the lack of architectural consideration at design time and
management of unit-level size and complexity during
development. One methodology that can alleviate this issue is
to set unit size metric thresholds for the entire development
organization. These thresholds can include maximum number
of inputs and outputs per unit, reusable libraries, cyclomatic
complexity or number of elements. To manage the unit’s
complexity, these metrics should be reviewed during the model
review process of the development cycle. This will enable
visibility of the complexity and scope of how the algorithm has
been designed during the development process. A model
Metrics Dashboard, as included in Simulink Check can make
this process easier. This dashboard provides metrics for total
block count, MATLAB lines of code (LOC), Stateflow LOC,
model complexity, number of blocks, and other metrics to the
modelers and model reviewers. The dashboard supports the
design workflow by continuously monitoring models to ensure
that they are not being divided into units that are too small
(increasing management complexity) or too large (unable to be
easily tested and difficult to reuse).

Threshold values are often an area of debate. This is because
the model complexity usually cannot be measured from a single
aspect of the model. It is often necessary to analyze multiple
metrics to make meaningful decisions. For example, one
Stateflow chart can have very high cyclomatic complexity
while its block count is only one. The recently published paper
Model Quality Objectives for Embedded Software
Development with MATLAB and Simulink [2], from
MathWorks and a group of automotive companies (Delphi
Technologies, Bosch, PSA, Renault, and Valeo) provides
guidance on metrics and thresholds. For example, model
cyclomatic complexity should be 30 or lower, and the number

of model elements should be less than 500. Specific threshold
values may be subject of discussions among OEM and
suppliers.

I1l. INTERFACE DEFINITION AND DATA EXCHANGE

Part 6 of ISO 26262:2018 has multiple considerations that
address interface complexity and data exchange between units
and components. For example:

e Table 3 - 1b: Restricted size and complexity of
software components

e Table 3 - 1c: Restricted size of interfaces

e Table 7 - 1g: Data flow analysis

e Table 7 - 1k: Interface tests

To fulfil these requirements and to also address freedom from
interference, it is important to determine architectural strategies
for how data will be exchanged between units, components, and
different ASILs. This section provides four best practices aimed
at managing interface complexity and data exchange.

A. Grouping Bus Signals by ASIL, Feature, and Rate

ISO 26262 Part 6 Table 7 - 1g recommends that development
teams perform data flow analysis. Data flow analysis is
necessary to understand how signals are passed through a
software algorithm and down to the unit level. This type of
analysis can spot areas where signal requirements are
contradictive or where various signals should not be directly
used based on characteristics of the provider. To perform this
analysis at the model level, a bus hierarchy strategy must be
developed to make it easier to understand where the signal is
coming from and what the characteristics of the signal are. Not
specifying how bus signals should be grouped hierarchically,
can result in the following issues:

e Inefficient bus segmentation

e Inconsistent bus grouping from developer to developer

e Modeling difficulty when splitting and recreating
buses

e Inefficient code generation

Just as model architecture requires a top-down design approach,
the same is true for bus hierarchy. To better manage the ASIL,
signals should be grouped based on task rate and ASIL in the
bus hierarchy (see Figure 3). By grouping these signals based
on ASIL, it will be easier to determine the provider of a signal
and determine if the signal is being used in a unit of a higher
ASIL.

O s>
— ASIL_C <Feature_A> <Rate_A>
<Sig_2>

Fig 3: Grouping signals in a bus hierarchy.

www.embedded-world.eu

B. Passing Only Necessary Signals to Units

Table 3 and Table 7 of 1SO 26262 Part 6 have important
suggestions on unit-level interfaces and data exchange. These
two tables mention that the size and complexity of software
components and interfaces should be reduced where possible.
Also, during the verification process, users should perform
interface tests. If unused variables are passed down to a unit-
level model, additional testing will be necessary to ensure that
these signals do not have an impact on the unit. To alleviate this
concern, reducing the inputs that are passed to the unit level can
help. Splitting bus signals prior to entering a unit-level model
facilitates this (see Figure 4).

] unitd
» —»{ CAN_Input
@ —£ CAN_Input —npu ‘)
CAN_Input unit4_sig1
Bus Selection
.—D-—DZ hwint6
- —£ hwint6 Wi
hwint6
unit4_sig2
’—b uints_sig2

Fig 4: Splitting bus signals entering a unit-level model.

C. Placement of Signal and Parameter Objects

The high-level use case for signal and parameter objects is to
define the interface between the model and base software. In
such a use case, parameter objects are typically used for
specifying calibration values and placed inside model blocks
such as Gain and Lookup Table blocks. The usage of signal
objects is more complex, but it usually is associated either with
internal signals to support calibration activities or with root
input and output ports. It is important to note that the interface
to the model reference block does not contain signal objects.
This is because signals at the boundary of the unit level are
considered internal interface signals. This also assumes that the
code is being generated at the highest ASIL partition as
mentioned in section I1.C. For the internal interface signals, it
is best to let the code generator, e.g. Embedded Coder define
those signals based on its internal optimization algorithms. Data
type information, however, does need to be explicitly defined
as part of the Port block configuration at model reference
boundaries, as shown in Figure 5.

[Pl Block Parameters: unit3_sig1 X
Outport

Provide an output port for a subsyst
Gcabled dll\m[p(p ram
s cone

Main Signal Attributas

Minimunm: Maximum:
0 i 0
Data type: | single ! ~

' Lock output data type satting against changes by the fixec

unit (eg,, m, mis~2, N*m): s
finhert

Fig 5: Defining data type for a port.

This best practice restricts the placement of interface signal
objects to the code generation model boundaries. It also ensures
that when code is generated for each ASIL, the root-level output
ports will point to the corresponding interface function in the
other ASIL section.

The storage class used for the signal and parameter objects can
be set based on the software architecture and coding practices.
The exception will be the protection needed for data exchange
between ASIL models or partitioning as required by freedom
from interference.

D. Data Exchanged Protection Between ASILs

One consideration when code for each ASIL is generated
separately is that a protection method is needed to exchange
data between each ASIL. Multiple strategies exist using storage
classes on the ASIL sections’ root-level input and output ports.
One prevalent method is to use a storage class that has get and
set access functions for the data. By using get and set access
functions, it is possible to add more protection to these
interfaces so that only appropriate software components are
accessing data (see Figure 6 and Figure 7).

rtb_UnitDelay - get unit3 sig2();

‘ s Siaetan)
e —
s so2

Fig 6: GetSet storage classes used on the root-level input ports
and the corresponding generated code.

Code generation options

Storage class: GetSet (Custom)

Custom attributes

HeaderFile:

Getfunction: |get_$N

SetFunction: |set_$N

[)

Fig 7: Storage class configuration ensuring that the Get and
Set APIs match between ASILs.

It is important to note that the GetSet storage class objects only
provide an entry point for the interface protection. The actual
implementation of the protection is typically done through low-

level software layers implemented by hand coding, which can
be easily integrated using the GetSet storage class.

IV. CoODE GENERATION CONFIGURATION

Once the model has been developed according to the best
practices listed above, there are still code generation
configuration settings that need special attention to achieve
objectives set forth by 1SO 26262. This section provides best
practices for code generation configuration setting with respect
to code placement and separation of shared utility files. Again,
the configuration listed below assumes the previous best
practices have been followed.

A. Code Placement Strategy

Freedom from interference is necessary to ensure that if there is
an issue with one section of the system at an ASIL, it will not
impact functionality at a separate ASIL. For example, if a QM
or ASIL A component has an issue or a failure occurs, the
design should segment this functionality away from
functionality that is ASIL D to ensure that the ASIL D
functionality can continue operating. In embedded systems, one
type of fault that is a concern is if portions of the application
have access to sections of memory or functions that they should
not have access to. One way to address this concern is to
separate the functionality into distinct memory sections or cores
of a microprocessor. This can be done by telling the compiler
into which section each variable, function, or file should be
placed. Figure 8 demonstrates how the application could be
separated.

ECU Example Architecture

FEEsE==s

: i ASIL

 RAM 7 Bl

i i ASIL

1 swe FIET ROM
OS/RTE

Fig 8: Segmenting the system architecture to ensure freedom
from interference.

Another technique is to split various ASIL and QM levels into
separate memory sections. Splitting the memory sections
alleviates some concerns with various ASILs unintentionally
interacting with each other, such as a function within the QM
software component (SW-C) writing to a protected ASIL RAM
location. To configure this, memory sections can be selected in
the configuration options as shown in Figure 9. This method
does not have to be used, but it does simplify the overall
workflow.

‘@ Configuration Parameters: Configuration - o

Q

Solver Show Embedded Hardware App in Simulink Toolstrip
Data Import/Export
Math and Data Types

» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target

Memory Sections
Package containing memary sections for model data and functions

Package: [MemorySectionExample ~ | | Refresh package list

Memory sections for model functions and subsystem defaults
¥ Code Generation
Initialize/Terminate: |QM_MEM_SEC -

Execution QM_MEM_SEC =

Shared utily: QM_MEM_SEC S
Memory sections for model data and subsystem defaults

Constants: |QM_MEM_SEC

Inputs/Outputs: |QM_MEM_SEC
Internal data: QM_MEM_SEC
Parameters: QM_MEM_SEC

A fa|fe]fe

‘ eme
Data Type Replacement
» Coverage

Fig 9. Configuring parameter settings for memory sections.

B. Different Name Tokens for Shared Ultilities

Embedded Coder generates common utility files known as
shared utilities. These files are basic functions that are used
across the code generation model. This method presents an
issue in a safety-related application because there will not be
any distinctions between the sources of the shared utility files.
To compile code into a signal application with the segmentation
concept, shared utilities must be generated and allocated based
on their ASIL. This can be done the through the shared utilities
identifier format option in the code generation configuration
(see Figure 10).

Model Configuration/Code Generation/Symbols |

Fig 10: Configuring shared utility settings.

With the above settings, one can create the generated shared
utility with a unique identifier that is a function of the ASIL.
For example, the shared utility for the Lookup Table block
when configured based on the above QM suffix is shown in
Figure 11.

www.embedded-world.eu

Shared files

look1_ifif_binlxpw_QM.c

look]_ifif binlxpw QM.h
—

Fig 11: Shared utility configured for QM.

V. SUMMARY AND FUTURE WORK

The findings presented in this paper are best practices created
through multiple MathWorks consulting engagements. These
best practices are proven enablers to adoption of 1ISO 26262.
However, following these best practices does not guarantee 1ISO
26262 compliance because they address a subset of all 1SO
26262 requirements, and each application has unique needs.

Future work is underway in applying the above best practices
for AUTOSAR standards [5,6]. Fortunately, AUTOSAR
facilitates concepts presented in this work so that many or most
of the topics discussed in the previous sections can be mapped
directly onto AUTOSAR concepts. For addressing the system-
level requirements of 1SO 26262, System Composer [7] can be
leveraged for modeling and simulation and to help users
meeting requirements of 1SO 26262:2018-4 [8] and 1SO
26262:2018-9 [9].

REFERENCES

[1] 1SO: ISO 26262-6, Road vehicles — Functional safety — Part 6: Product
development at the software level, December 2018.

[2] Conrad, M., Sandmann, G., Munier, P.: Software Tool Qualification
According to ISO 26262. SAE 2011 World Congress, Detroit, M, USA,
April 2011. SAE Techn. Paper #2011-01-1005

[3] 1SO: ISO 26262-8, Road vehicles — Functional safety — Part 8:
Supporting processes, December 2018.

[4] Jérdbme Bouquet, Stéphane Faure, Florent Féve, Matthieu Foucault,
Ursula Garcia, et al.. Model Quality Objectives for embedded software
development with MATLAB and Simulink. 9th European Congress on
Embedded Real Time Software and Systems (ERTS 2018), Jan 2018,
Toulouse, France.

[5] AUTOSAR, www.autosar.org. Automotive Open System Architecture,
2019.

[6] AUTOSAR, www.autosar.org. AUTOSAR Adaptive Platform for
Connected and Autonomous Vehicles, 2019.

[7] System Composer, www.mathworks.com/products/system-
composer.html, 2019

[8] 1SO: 1SO 26262-4, Road vehicles — Functional safety — Part 4: Product
development at the system level, December 2018.

[9] 1SO: ISO 26262-9, Road vehicles — Functional safety — Part 9:
Automotive safety integrity level (ASIL)-oriented and safety-oriented
analyses, December 2018.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

