
www.embedded-world.eu

Planning Software Architecture and Modeling

Patterns for ISO 26262 Compliance

Tjorben Groß1, Jason Moore2, John Lee2
1: The MathWorks GmbH, Aachen, Germany

2: The MathWorks Inc, Natick (MA), USA

Abstract—The ISO 26262 standard for functional safety

provides high-level guidance on the development of automotive

electronics and electrical systems, including embedded software. At

MathWorks we have observed that the room for interpretation of the

standard can be both useful and burdensome. In this work we will

contribute to closing this gap. We will provide guidance for Model-

Based Design development projects, particularly how to address

challenges such as freedom from interference, testability at different

software architecture levels, and reusability. These best practices will

be addressed by means of modeling patterns and will lay the

foundation for more streamlined software verification.

Keywords—ISO 26262; functional safety; automotive;

modeling; architecture; Model-Based Design;

I. INTRODUCTION

This paper highlights best practices around developing ISO

26262 compliant software. These will be illustrated with

Simulink models for architecture and design. Note that we will

focus on leveraging concepts of Model-based Design rather

than introducing Model-based Design itself.

For software development in the context of ISO 26262:2018-6

[1] OEMs and suppliers need to be able to provide

documentation that the system has been developed, verified and

tested according to state of the art methodologies. It is crucial

to think through possible design choices for the algorithm’s

architecture as early as possible because these choices can have

a substantial impact on the efficiency of the development

organization, reusability of the software, and testability of the

software.

MathWorks provides guidance documents, as part of an IEC

certification kit, which can be used to demonstrate compliance

with the portions of the ISO 26262 standard that are applicable

to Model-Based Design. The kit provides a high-level workflow

that can be referenced, tailored, and extended as needed, as well

as support for tool qualification [2], thus addressing ISO

26262:2018-8 [3] and helping to reduce efforts for tool

qualification efforts significantly.

By adopting an appropriate modeling style and architecture it is

possible to greatly reduce the work needed to meet key aspects

of the standard such as freedom from interference. MathWorks

Consulting Services has developed best practices during

consulting engagements with various automotive companies.

Throughout this paper, we provide suggestions on modeling

practices that can be used to segment algorithms to reduce

verification and deployment efforts when adhering to ISO

26262-6 and using Model-Based Design. These best practices

can be classified into the following categories that match with

the next three sections: model architecture in section 2, signal

routing and definition in section 3, and code generation

configuration in section 4. Finally, section 5 provides a

summary and future directions.

II. MODEL ARCHITECTURE

One of the first decisions during algorithm development in

Simulink involves the general model architecture. Decisions at

this stage affect software testability, software reusability, unit

and integration testing methods, ease of software integration,

and software segmentation for freedom from interference.

The best practices center around areas that make ISO 26262

compliance easier while increasing efficiency in the validation,

verification, and documentation phases.

A. Using Model Reference for Unit-Level Models

One of the main focal points in part 6 of ISO 26262 is the

workflow for developing, validating, and verifying software

units. Software units are intended to be the smallest testable

parts of an application that must be individually tested for

proper operation. To maintain traceability, requirements will be

mapped to and/or within these individual software units, and

requirements-based test cases will be built to extensively test

the software unit. Therefore, the modeling construct used for

unit development needs to consider various aspects, including

testability, code generation, complexity, testing workflow,

traceability, and documentation. These aspects point to reliance

on model references as the primary modeling pattern for unit

development. Model references have multiple characteristics

that are conducive to the desired outcome including:

• Code generation – There is a one-to-one mapping from

model reference to source files generated.

• Reusability – Model references can be used in multiple

places throughout an integration model.

• Testability – Model references are ideal for test

harness construction.

• Team collaboration – Model references enable parallel

development across developers and simplify the

overall configuration management and version control

processes.

B. Strategy for Grouping Units into Features

When integrating units and grouping them to features, one can

choose from various types of modeling constructs to add model

hierarchy such as virtual subsystems, atomic subsystems, model

references, and library blocks.

For ISO 26262, there is flexibility on how these unit models can

be grouped under their respective ASIL. The recommendation

from the previous section added the constraint that model

reference should be used for the unit-level algorithm. However,

for grouping of units, either subsystems or model reference can

be used. Some of the tradeoffs to consider are the number of

model references that need to be managed and how firm a

modeling boundary is required at a feature level. The following

items need to be considered when determining a feature model

segmentation strategy:

• Generated code file and functionality grouping

• Parallel feature development by multiple developers

• The overhead associated with model reference files

• The ease of visibility for feature grouping in the design

At this intermediate level of the model between unit and the top

level, the choice of modeling constructs is up to the

organization’s modeling guidelines and preferences.

C. Spliting ASIL and QM Levels at the Top Level of the Model

One key concept in ISO 26262 centers around freedom from

interference. ISO 26262 has five distinct safety levels (Quality

Management (QM), and ASIL A–D) that can be used to classify

system- and software-level functionality based on the

functional safety aspects of the system. Electrical and electronic

systems that are following ISO 26262 may have components at

different ASILs. For example, a component that reports out

non-critical diagnostic data may be classified as a QM

component, whereas a component that could impact the

vehicle’s ability to brake, may be classified to a higher-level

ASIL component due to the high degree of hazard/injury risk if

a failure occurs.

A system with multiple ASIL components will benefit from an

architecture that efficiently segments these algorithms into

separate containers. The benefit will be seen for two reasons: 1.

Each ASIL can have different development, validation, and

verification requirements. 2. Separating and segmenting ASILs

enables freedom from interference.

Since the various ASILs will be split, we recommend choosing

a modeling construct to aid in that segmentation. Using model

references ensures that when the algorithm is deployed, there

will be a firm boundary at each components’ border. Therefore,

we would split the top level of the system-level model into

multiple model references with each model reference

representing a separate component with different ASIL. Note

that in this case, due to code generation configuration settings

(see the Code Generation Configuration section for detail), the

system-level model is for simulation only, and code generation

can only be done separately based on ASIL. Generating code at

the unit level and then integrating it is another option. However,

generating code at as high a level as possible reduces the

amount of overhead during code integration.

By using a model reference for each ASIL or even more

generically, whenever freedom from interference is needed,

separate functions and source files will be generated for each

model reference. By following this and the code generation

configuration best practice, each segmented partition will have

its own source files, shared utilities, and data definitions, which

will make it easier to achieve freedom from interference

between the different sections of the algorithm. Figure 1

demonstrates how a model could hierarchically be split based

on ASIL.

Fig 1: Model hierarchy based on ASIL.

D. Eliminating Algorithmic Content at the Integration Level

ISO 26262 has the notion of multiple testing levels in the

representative architecture, including unit level, integration

level, and system level. Typically, a software unit must go

through various levels of testing rigor based on the targeted

ASIL. For example, ASIL D may require full modified

www.embedded-world.eu

condition and decision coverage (MCDC), whereas for ASIL A

or B, condition and decision coverage may be acceptable.

Because of this, units are the only place where algorithmic

functionality should be implemented. If algorithmic content

occurs at the integration or system level of the model, it can be

more difficult to achieve full coverage of the design. For this

reason, it is recommended to ensure that no algorithm content

occurs outside of unit-level models (see Figure 2).

Fig 2: Avoiding algorithm content outside of the unit.

E. Using Model Metrics to Monitor Unit Complexity

Many organizations realize late in the development cycle that

their algorithms will be difficult to validate to the level of

coverage that ISO 26262 recommends. This typically stems

from the lack of architectural consideration at design time and

management of unit-level size and complexity during

development. One methodology that can alleviate this issue is

to set unit size metric thresholds for the entire development

organization. These thresholds can include maximum number

of inputs and outputs per unit, reusable libraries, cyclomatic

complexity or number of elements. To manage the unit’s

complexity, these metrics should be reviewed during the model

review process of the development cycle. This will enable

visibility of the complexity and scope of how the algorithm has

been designed during the development process. A model

Metrics Dashboard, as included in Simulink Check can make

this process easier. This dashboard provides metrics for total

block count, MATLAB lines of code (LOC), Stateflow LOC,

model complexity, number of blocks, and other metrics to the

modelers and model reviewers. The dashboard supports the

design workflow by continuously monitoring models to ensure

that they are not being divided into units that are too small

(increasing management complexity) or too large (unable to be

easily tested and difficult to reuse).

Threshold values are often an area of debate. This is because

the model complexity usually cannot be measured from a single

aspect of the model. It is often necessary to analyze multiple

metrics to make meaningful decisions. For example, one

Stateflow chart can have very high cyclomatic complexity

while its block count is only one. The recently published paper

Model Quality Objectives for Embedded Software

Development with MATLAB and Simulink [2], from

MathWorks and a group of automotive companies (Delphi

Technologies, Bosch, PSA, Renault, and Valeo) provides

guidance on metrics and thresholds. For example, model

cyclomatic complexity should be 30 or lower, and the number

of model elements should be less than 500. Specific threshold

values may be subject of discussions among OEM and

suppliers.

III. INTERFACE DEFINITION AND DATA EXCHANGE

Part 6 of ISO 26262:2018 has multiple considerations that

address interface complexity and data exchange between units

and components. For example:

• Table 3 - 1b: Restricted size and complexity of

software components

• Table 3 - 1c: Restricted size of interfaces

• Table 7 - 1g: Data flow analysis

• Table 7 - 1k: Interface tests

To fulfil these requirements and to also address freedom from

interference, it is important to determine architectural strategies

for how data will be exchanged between units, components, and

different ASILs. This section provides four best practices aimed

at managing interface complexity and data exchange.

A. Grouping Bus Signals by ASIL, Feature, and Rate

ISO 26262 Part 6 Table 7 - 1g recommends that development

teams perform data flow analysis. Data flow analysis is

necessary to understand how signals are passed through a

software algorithm and down to the unit level. This type of

analysis can spot areas where signal requirements are

contradictive or where various signals should not be directly

used based on characteristics of the provider. To perform this

analysis at the model level, a bus hierarchy strategy must be

developed to make it easier to understand where the signal is

coming from and what the characteristics of the signal are. Not

specifying how bus signals should be grouped hierarchically,

can result in the following issues:

• Inefficient bus segmentation

• Inconsistent bus grouping from developer to developer

• Modeling difficulty when splitting and recreating

buses

• Inefficient code generation

Just as model architecture requires a top-down design approach,

the same is true for bus hierarchy. To better manage the ASIL,

signals should be grouped based on task rate and ASIL in the

bus hierarchy (see Figure 3). By grouping these signals based

on ASIL, it will be easier to determine the provider of a signal

and determine if the signal is being used in a unit of a higher

ASIL.

Fig 3: Grouping signals in a bus hierarchy.

B. Passing Only Necessary Signals to Units

Table 3 and Table 7 of ISO 26262 Part 6 have important

suggestions on unit-level interfaces and data exchange. These

two tables mention that the size and complexity of software

components and interfaces should be reduced where possible.

Also, during the verification process, users should perform

interface tests. If unused variables are passed down to a unit-

level model, additional testing will be necessary to ensure that

these signals do not have an impact on the unit. To alleviate this

concern, reducing the inputs that are passed to the unit level can

help. Splitting bus signals prior to entering a unit-level model

facilitates this (see Figure 4).

Fig 4: Splitting bus signals entering a unit-level model.

C. Placement of Signal and Parameter Objects

The high-level use case for signal and parameter objects is to

define the interface between the model and base software. In

such a use case, parameter objects are typically used for

specifying calibration values and placed inside model blocks

such as Gain and Lookup Table blocks. The usage of signal

objects is more complex, but it usually is associated either with

internal signals to support calibration activities or with root

input and output ports. It is important to note that the interface

to the model reference block does not contain signal objects.

This is because signals at the boundary of the unit level are

considered internal interface signals. This also assumes that the

code is being generated at the highest ASIL partition as

mentioned in section II.C. For the internal interface signals, it

is best to let the code generator, e.g. Embedded Coder define

those signals based on its internal optimization algorithms. Data

type information, however, does need to be explicitly defined

as part of the Port block configuration at model reference

boundaries, as shown in Figure 5.

Fig 5: Defining data type for a port.

This best practice restricts the placement of interface signal

objects to the code generation model boundaries. It also ensures

that when code is generated for each ASIL, the root-level output

ports will point to the corresponding interface function in the

other ASIL section.

The storage class used for the signal and parameter objects can

be set based on the software architecture and coding practices.

The exception will be the protection needed for data exchange

between ASIL models or partitioning as required by freedom

from interference.

D. Data Exchanged Protection Between ASILs

One consideration when code for each ASIL is generated

separately is that a protection method is needed to exchange

data between each ASIL. Multiple strategies exist using storage

classes on the ASIL sections’ root-level input and output ports.

One prevalent method is to use a storage class that has get and

set access functions for the data. By using get and set access

functions, it is possible to add more protection to these

interfaces so that only appropriate software components are

accessing data (see Figure 6 and Figure 7).

Fig 6: GetSet storage classes used on the root-level input ports

and the corresponding generated code.

Fig 7: Storage class configuration ensuring that the Get and

Set APIs match between ASILs.

It is important to note that the GetSet storage class objects only

provide an entry point for the interface protection. The actual

implementation of the protection is typically done through low-

www.embedded-world.eu

level software layers implemented by hand coding, which can

be easily integrated using the GetSet storage class.

IV. CODE GENERATION CONFIGURATION

Once the model has been developed according to the best

practices listed above, there are still code generation

configuration settings that need special attention to achieve

objectives set forth by ISO 26262. This section provides best

practices for code generation configuration setting with respect

to code placement and separation of shared utility files. Again,

the configuration listed below assumes the previous best

practices have been followed.

A. Code Placement Strategy

Freedom from interference is necessary to ensure that if there is

an issue with one section of the system at an ASIL, it will not

impact functionality at a separate ASIL. For example, if a QM

or ASIL A component has an issue or a failure occurs, the

design should segment this functionality away from

functionality that is ASIL D to ensure that the ASIL D

functionality can continue operating. In embedded systems, one

type of fault that is a concern is if portions of the application

have access to sections of memory or functions that they should

not have access to. One way to address this concern is to

separate the functionality into distinct memory sections or cores

of a microprocessor. This can be done by telling the compiler

into which section each variable, function, or file should be

placed. Figure 8 demonstrates how the application could be

separated.

Fig 8: Segmenting the system architecture to ensure freedom

from interference.

Another technique is to split various ASIL and QM levels into

separate memory sections. Splitting the memory sections

alleviates some concerns with various ASILs unintentionally

interacting with each other, such as a function within the QM

software component (SW-C) writing to a protected ASIL RAM

location. To configure this, memory sections can be selected in

the configuration options as shown in Figure 9. This method

does not have to be used, but it does simplify the overall

workflow.

Fig 9. Configuring parameter settings for memory sections.

B. Different Name Tokens for Shared Utilities

Embedded Coder generates common utility files known as

shared utilities. These files are basic functions that are used

across the code generation model. This method presents an

issue in a safety-related application because there will not be

any distinctions between the sources of the shared utility files.

To compile code into a signal application with the segmentation

concept, shared utilities must be generated and allocated based

on their ASIL. This can be done the through the shared utilities

identifier format option in the code generation configuration

(see Figure 10).

Fig 10: Configuring shared utility settings.

With the above settings, one can create the generated shared

utility with a unique identifier that is a function of the ASIL.

For example, the shared utility for the Lookup Table block

when configured based on the above QM suffix is shown in

Figure 11.

Fig 11: Shared utility configured for QM.

V. SUMMARY AND FUTURE WORK

The findings presented in this paper are best practices created

through multiple MathWorks consulting engagements. These

best practices are proven enablers to adoption of ISO 26262.

However, following these best practices does not guarantee ISO

26262 compliance because they address a subset of all ISO

26262 requirements, and each application has unique needs.

Future work is underway in applying the above best practices

for AUTOSAR standards [5,6]. Fortunately, AUTOSAR

facilitates concepts presented in this work so that many or most

of the topics discussed in the previous sections can be mapped

directly onto AUTOSAR concepts. For addressing the system-

level requirements of ISO 26262, System Composer [7] can be

leveraged for modeling and simulation and to help users

meeting requirements of ISO 26262:2018-4 [8] and ISO

26262:2018-9 [9].

REFERENCES

[1] ISO: ISO 26262-6, Road vehicles — Functional safety — Part 6: Product
development at the software level, December 2018.

[2] Conrad, M., Sandmann, G., Munier, P.: Software Tool Qualification
According to ISO 26262. SAE 2011 World Congress, Detroit, MI, USA,
April 2011. SAE Techn. Paper #2011-01-1005

[3] ISO: ISO 26262-8, Road vehicles — Functional safety — Part 8:
Supporting processes, December 2018.

[4] Jérôme Bouquet, Stéphane Faure, Florent Fève, Matthieu Foucault,
Ursula Garcia, et al.. Model Quality Objectives for embedded software
development with MATLAB and Simulink. 9th European Congress on
Embedded Real Time Software and Systems (ERTS 2018), Jan 2018,
Toulouse, France.

[5] AUTOSAR, www.autosar.org. Automotive Open System Architecture,
2019.

[6] AUTOSAR, www.autosar.org. AUTOSAR Adaptive Platform for
Connected and Autonomous Vehicles, 2019.

[7] System Composer, www.mathworks.com/products/system-
composer.html, 2019

[8] ISO: ISO 26262-4, Road vehicles — Functional safety — Part 4: Product
development at the system level, December 2018.

[9] ISO: ISO 26262-9, Road vehicles — Functional safety — Part 9:
Automotive safety integrity level (ASIL)-oriented and safety-oriented
analyses, December 2018.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

