

Getting Started with AutoML Using MATLAB®

Why AutoML?

Automated machine learning (AutoML) lets you automate difficult and iterative steps in the model building workflow without requiring machine learning expertise.

What limits adoption of machine learning:

- High cost of required expertise
- Incremental iterative workflow
- Manual optimization not feasible for lots of models

Benefits of AutoML

- Engineers and domain experts with little to no expertise can build good models.
- Machine learning experts save time.
- Applications that require lots of optimized models can be realized.

Approaches to Automating Model Building

1. Feature Extraction

Note:

Works well for signal and image data

2. Feature Selection

Neighborhood Component Analysis

Identify small subset of features with high predictive power.

fscnca(data, labels, 'Lambda');
find(mdl.FeatureWeights > 0.2)

Also available:

- Max Relevance Min RedundancyReliefF
- Stepwise selection

3. Model Selection

Identify best model in one step:

For classification: fitcauto(data, labels, 'Options', ...)

For regression: fitrauto

Options

- Limit optimization iterations: MaxObjectiveEvaluations
- Activate parallel execution:
 UseParallel
- Save model after each iteration: SaveIntermediateResults
- Limit which models and hyperparameters to consider: Learners / OptimizeHyperparameters
- Display errors: ShowPlots

Notes:

- Not guaranteed to find best model
- Good results after 50–150 iterations

Learn more: mathworks.com/discovery/automl.html

mathworks.com

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.