March 11, 2015

Aerospace System Guidance and Control
Lesson V

Arduino Basics

Skyward Experimental Rocketry
Politecnico di Milano

POLITECNICO DI MILANO

Author: Francescodario Cuzzocrea

Editor: Edoardo Codispoti

DIPARTIMENTO DI
INGEGNERIA AEROSPAZIALE

Abstract
In this lesson we will talk about the interface between the Arduino Board and Simulink

Website:
http://www.skywarder.eu

E-mail:
francescodario.cuzzocrea@skywarder.eu

http://www.skywarder.eu
mailto:francescodario.cuzzocrea@skywarder.eu

Contents

1 What is Arduino 1
2 Programming Arduino with Simulink 2
21 Afirstsimpleexample oL 2
2.2 Traffig Light Controller 5
23 ServoControl e e e 7
3 Sensors Reading with Simulink and Arduino 9
31 WhatisaMEMS e e e e 9
3.2 MEMs communication interface e 10
33 Skyward BLIMP Target 10
3.4 Read Data from Sensors e e e 11
35 PIDExample. 13

Chapter 1

What is Arduino

Arduino is a single-board microcontroller inteded to make the application of interactive objects
or enviroment more accessible. So Arduino can be used for fast prototiping, or for building
small robots (or an airship, like in our case).

Pre-programmed into the on-board microcontroller chip is a boot loader that allows uploading
programs into the microcontroller memory without needing a chip (device) programmer, simply
by using the USB port. Arduino is provided with input/output functionality so the board can
send /receive data to the external sensors. The behaviour of the board is managed by microcon-
troller based on the decisions implemented on the program that’s running on the board. The
board may also interact with the external enviroment by using actuator driven by the pro- gram
trought the output channels.

0. Cuartielles

H
]
o
z

Figure 1.1: Arduino

Chapter 2

Programming Arduino with
Simulink

Simulink can be enhanced with different kind of libraries, so we can simulate the behaviour of
a large variety of system and plus, Simulink can be used to run our simulation on a targetted
hardware board, in this case for example we are going to use an Arduino Uno, but also STM32
BeagleBoard and Raspberry Pi can be used, MathWorks is putting a lot of effort in supporting
various kind of board at every new relase of MATLAB.

2.1 A first simple example

So let’s start to play together with the Arduino Uno board and Simulink. In this first example you
will learn how to interface Arduino with Simulink, so we can generate a firmware compatible
with the board starting from our model built and tested on Simulink.

First open up Simulink, simply by typing simulink from the MATLAB command prompt, so the
Simulink library browser will show up.

For this first simple example we are going to use blocks from the Simulink blockset and from the
Simulink Support Package for Arduino Hardware blockset. Let’s start a new blank project by
clicking on File > New > Model. We want to control the digital output of the Arduino Board in
order to made a led blink at specified time interval, so first we need to select a Pulse Generator,
simply by drag and dropping the Pulse Generator block in the model window. We need the
Pulse Generator in order to generate the signal that we will sent to the digital output of the
Arduino Uno board :

>

Figure 2.1: Pulse Generator

Then we need to connect the pulse generator to the digital outpu of the Arduino Uno board. So

let’s browse the Simulink Support Package for Arduino Hardware blockset and select the digital
output block.

Figure 2.2: Digital Output Block

In order to made our model work, we need to set the corret pulse type of our pulse generator,
so as our signal should control a digital output, we need to set the “sample based” pulse type
and set the sample time to 0.1 (or wichever value you want to set) :

3 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

»

Figure 2.3: Sample Generator Options

Now we are ready to test our model consistency with Simulink. Let’s connect a scope between
the Pulse Generator block and the digital output block, and next cick Run. Double clicking on
the scope will show us the results of our simulation :

Figure 2.4: Simulation Results

Now we are ready to build the real circuit and to download the firmware to the Arduino Uno
board.In the figure below is rapresented the wiring

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 4

>

Figure 2.5: LED Wiring

So, after the wiring is done, we need to connect the Arduino Uno board to our PC trought the
USB cable. On Simulink let’s click on Tools > Run on Target Hardware > Prepare to Run. A
window will pop-up, we need to chose the Arduino Uno target hardware, then click Apply. The
Simulink defaults settings are perfectly suitable for our needs.

I - - -]

Figure 2.6: LED Wiring

Now click again on Tools > Run on Target Hardware > Run. Simulink will automatically generate
the necessay C code based on our model, and will flash the firmware on the board. Take a look
to the led, should blink.

2.2 Traffig Light Controller

In this example we will gonna use MathWorks StateFlow in order to simulate the logic of a
Traffic Light, then we will download the model on Arduino. Stateflow is a graphical design and
development tool for control and supervisory logic that can be used in conjuction with Simulink.
So with Stateflow we can model and simulate combinatorial and sequential decision logic based
on state machines and flow charts, like for example, a traffic light controller :

5 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

»

Aerospace System Guidance and Control Lesson V

Fin G4 ew Oun Oun Smiston Amim (o T Hep
G-l e DR 4O &) x| @ il
e e - A
.:__m & [amen. o » o mik ape orows
aQ
a
=l
x
a
a | oo
i
*
al
o
|
- |
< | % B
g 2 [r— e Fucctimtine

Figure 2.7: Stateflow

So, in order to use the stateflow chart, we need to connect the output of the state machine to
Arduino Digital Output Block, build the circuit, and then we have to deploy the model on the
hardware :

Fle G Ve Ouley Ovgum Smimen Aukw Cafe T Fap

-0« fo-E- 40 = w-n - =l -
SE__JJ,:__ -#r—-—uu -
X
=

mn

il

:§§ ;

f
4

g

-

| Mot mercmtaby dptoyss b b Moge S8 prereey T3

Figure 2.8: Traffic Light Controller

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 6

H»

Figure 2.9: Traffic Light Controller Wiring

2.3 Servo Control

With the Simulink Support Package for Arduino we can also command a servo, trought the
Standard Servo Write Block. Let’s see an example. Open a new model, then input the desired
shaft angle and connect the desired shaft angle block to the servo block. Then deploy the model
on the hardware.

"3 arduinouno_servacontrol_sweep *

e ESt View Diplay Disgiem Simulsii shysis Code Tock Hep

e el 2l Sourcs Block Pararmctens Desird StaftAngic n
® |[Fadarturoun_servcontrol_sien e ica Stat: Cmeek) k)

Diserete Lime sequence IS sutput, then repeated.

Main | Signal Ambutes
Vector of output volues:

Sampla tima:

BEEULES

0.01

ARDUINO

Desired Shaft Pin4
Angle Stancard Servo Write

Figure 2.10: Servo Control

7 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

»

fritzing

Figure 2.11: Servo Wiring

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Chapter 3

Sensors Reading with Simulink and
Arduino

3.1 What is a MEMs

The sensor that we will use are known as MEMs (Microelectromechanical systems). MEMS,
is a technology that in its most general form can be defined as miniaturized mechanical and
electro-mechanical elements (i.e., devices and structures) that are made using the techniques of
microfabrication. The critical physical dimensions of MEMS devices can vary from well below
one micron on the lower end of the dimensional spectrum, all the way to several millimeters.
Likewise, the types of MEMS devices can vary from relatively simple structures having no mov-
ing elements, to extremely complex electromechanical systems with multiple moving elements
under the control of integrated microelectronics.

X, Y fingers

Z torsional beams

Figure 3.1: MEMs Accelerometer

MEMS typically converts a measured mechanical signal into an electrical signal The real potential
of this kind of device, is that these miniatured sensors can me merged onto a common silicon
substrate along with integrated circuit process sequences, and so you can interface a MEMs, for
example, with an Arduino board .

»

3.2 MEMs communication interface

Our MEMs communicates with Arduino trought a bus called I12C (Inter-Integrated Circuit). The
I2C bus transmits data and clock with SDA and SCL. . SCL is the clock line. It is used to
synchronize all data transfers over the I2C bus. SDA is the data line. First thing to realize: SDA
and SCL are open-drain (also known as open-collector in the TTL world), that is I2C master
and slave devices can only drive these lines low or leave them open. The termination resistor
(pull-up resistors) pulls the line up to Vcc if no 12C device is pulling it down. This allows for
features like concurrent operation of more than one I2C master (if they are multi-master capable)
or stretching (slaves can slow down communication by holding down SCL). The devices on the
I2C bus are either masters or slaves. The master is always the device that drives the SCL clock
line. The slaves are the devices that respond to the master. A slave cannot initiate a transfer over
the I2C bus, only a master can do that. There can be, and usually are, multiple slaves on the I2C
bus, however there is normally only one master. It is possible to have multiple masters, but it is
unusual and not covered here. On your robot, the master will be your controller and the slaves
will be our modules such as the SRFO8 or CMPS03. Slaves will never initiate a transfer. Both
master and slave can transfer data over the I12C bus, but that transfer is always controlled by the
master. In our case the master is Arduino, the slave are the sensors. We can connect how many
slaves that we want to one master trought the I12C interface (the sensors can share SDA and SCL
lines). At this point should be clear the wiring : you simply have to connect SDA and SCL to
the SDA and SCL pins of Arduino board, GND to GND and VCC to the sensors specified logic
voltage (3.3V or 5V).

3.3 Skyward BLIMP Target

In order to make life easy to people who wants to drive sensors trough Simulink, we have
developed a Simulink Library that contains all the device drivers blocks that we will going to
use on the BLIMP.

The installation is pretty easy, you only ave to place the “Libreria” folder somewere, then you
have to open the folder in matlab (the folder contents should be shown in MATLAB current
folder) and run the SkywardConfigureScript. The script will take care of adding corrects path to
MATLAB and to add the library to simulink.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 10

H»

Workspace
Name « Value Min

¥ Bl &=

Seicmete

SkywardConfiguresCripLm (o

SKYWARD CONFIGURE SCRIPT
@ SKYWARD CONFIGURE SCRIPT

0| Ready

Figure 3.2: BLIMP Target Installation

Figure 3.3: BLIMP Target Library

3.4 Read Data from Sensors

Once we have create a new model using those blocks, we can for example see what kinds of
data are processed trought the Serial port by adding a Serial Transmit block and using the Serial
Receive block. The serial receive can send those datas to workspace, or you can connect a scope,
for example, to see the graph of data versus time.

11 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

»

Remember to always convert datas trought data type conversion block to uint8 right before the
Serial Transmit block (because this block can only print integer variables).

This is an example of a model to create in order to send datas to the serial port :

Barometer - olEl
e Edt View Displey Disgarn Simuimion Anchsis Code Tooks Help
-@ OB -4OP - ©-(w o -

0% FondStesDiscren:

Figure 3.4: Serial Transmit

And his is the model to create for the serial receive :

" uUnOnPC - oER

u s
- To ‘Workspace
= Soral Rotaivn "
Fal *[

| | Change he COM por 1o whichaver 1
me Aruing (sconnectsd to

Figure 3.5: Serial Receive

Keep in mind that “On Target” execution is different from “Simulation”. In lesson 4 you have
seen Simulation, so when a model is simulated, it is executed on your computer. The other way
in which a model like the ones in the previous pictures can be executed is by generating (from
the model) an executable that runs (typically in real time) on the target platform (Arduino in
our case), and unlike what happens when you simulate the model on the host computer, this
executable will be downloaded on Arduino and runs on it. So you can’t connect for example a
scope in a model that should be downloaded to Arduino to watch data, instead you should tell
to Arduino to send datas to Serial Port (0) and you can watch it trought Serial Receive.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 12

>

3.5 PID Example

As we said before, you can generate trought Simulink Arduino firmware without writing C code,
and this extremely speeds up the prototyping phase.

An example of thi powerful tool is the following PID controller, created by using both Arduino
Support Package, Simulink standard blocks, and ours Skyward Target for BLIMP.

QuoteFID |
e Cdt Viex Dipley Disgram Simulsion Anabsis Code Took Help
R w®-8-4@p ORI vl LI R
e
© [P oot -
“a
[+
=
)
=
tance
Uliason —— ARDUING
-
H A e
Orscrete PID Cortroller SAUMAION2 ° s
an Contnuus Senvo Wite
50
Congant
Resdy 130 wdety

Figure 3.6: PID Example

13 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

	Titlepage
	What is Arduino
	Programming Arduino with Simulink
	A first simple example
	Traffig Light Controller
	Servo Control

	Sensors Reading with Simulink and Arduino
	What is a MEMs
	MEMs communication interface
	Skyward BLIMP Target
	Read Data from Sensors
	PID Example

