MACHINE LEARNING AND CLOUD FOR EV SYSTEM DEVELOPMENT

V.Venkobarao, A.Konstantin, M.Wutz, M.Khan, P.Patil, S.Pittan / Vitesco Technologies /External

AGENDA

- 1 WHY AI FOR EV SYSTEM DEVELOPMENT
- 2 ALIGNMENT TO PROCESS
- 3 MODELING METHODS FOR SYSTEM DEVELOPMENT
- 4 AI FOR PREDICTION IN EV APPLICATION
- 5 DATAFLOW FOR CALIBRATION
- 6 ADVANTAGES OF PROPOSED METHOD
- 7 WHAT WE ACHIEVE

WHY AI FOR POWERTRAIN CONTROLS

- Cost benefit
- IP generation
- Performance improvement
- Efficiency improvement

ALIGNMENT TO PROCESS

CHALLENGES OF EMBEDDED AI

6% 6%	No space for monster network in Control unit	50
(°1)	Limited references for AI in control applications	
	Usage of AI algorithms in webspace to embedded control algorithms	0101 0110
(J)	Quantized inputs triggered at finite step size	(the second seco

MODELING METHODS FOR SYSTEM DEVELOPMENT

PHYSICS MODELS

- ✓ You have a "good enough" knowledge of the physical model
- ✓ You know how to implement it
- ✓ Must satisfy constraint

White box models

Physical model not always available

ML + PHYSICS MODELS

- partial knowledge of the physical model
- ✓ Have "enough" data to complete this knowledge
- ✓ You ensure generalization of solvers
 - Can fit easily highly nonlinear function
 - Solver design and hybridization with data models

ML MODELS

- ✓ Physical knowledge is mandatory
- ✓ You have "enough" data which cover the input space
- Ensure generalization by classic regularization

Can fit highly nonlinear function

Х

Black box model. Generalization challenge

AI FOR PREDICTION OF COMPONENT TEMPERATURE

90

[EN [

PROPOSED VS CONVENTIONAL METHOD FOR CALIBRATION

8 V.Venkobarao,A.Konstantin,M.Wutz, M.Khan,P.Patil,S.Pittan / Vitesco Technologies /External

Bengaluru, Aug 16, 2023, version 1.0

ADVANTAGES OF PROPOSED METHOD

Feature	Conventional method	Proposed method	Advantages
Measurements Parsing	ASAM parser	ASAM parser	
Data handling for Neural Network	No quantization of data Data not sampled	Quantization of data Data sampled - rate of control unit	\checkmark
Preprocessing of inputs	Not 1:1 with Microcontroller model	1:1 with Microcontroller model	\bigtriangledown
Iterative update of preprocessing parameters	Needs to be updated Manually	Update in GIT pipeline takes care	\bigtriangledown
Training of Neural Networks	With MATLAB/Python APIs	With MATLAB API	
Retraining of neural network - validation	Needs to be updated Manually retraining needs to be done	Update in GIT Preconfigured pipeline	\checkmark
Maintenance	Controller model and python model maintenance Sync of parameters – Python and Controller	Controller model used in pipeline Same parameters repo – controller and AWS	\checkmark

PROPOSED DATA FLOW FOR CALIBRATION

- > Easier and efficient Parametrization.
- > Blackbox pipeline end user
- > Effective usage of ASAM parser for measurement data parsing and processing

RESULTS AND ADVANTAGES

Parameters file easily downloadable from APP

- > Output temperature predicted is quite accurate
- > Error MSE < 1%
- > Parameters of the network can be downloaded
- > Used for validations with minimum effort

90

WHAT WE ACHIEVE

12 V.Venkobarao,A.Konstantin,M.Wutz, M.Khan,P.Patil,S.Pittan / Vitesco Technologies /External Bengaluru, Aug 16, 2023, version 1.0

LETS DISCUSS