Automated Driving System Toolbox
 Design and Test Traffic Jam Assist, A Case Study

Evolution of ADAS/Autonomous Driving Car

ACC and Lane Following Control for Traffic Jam Assist

ACC

Lane Following Control

Traffic Jam Assist

Traffic Jam Assist

- It helps drivers to follow the preceding vehicle automatically with a predefined time interval in a dense traffic condition
... while controlling steering for keeping current lane.

Longitudinal control with ACC with stop \& go
\square Lateral control with lane following

- Partial/conditional automation at level $2 / 3$
- Speed limit < 60~65 km/h
- Dense traffic condition in highway

Automated Driving System Toolbox
Design and Test Traffic Jam Assist, A Case study

Design ACC and Lane Following Controller

- Create driving scenario
- Synthesize sensor detection
- Include Vehicle Dynamics
- Design sensor fusion algorithm
- Design controller using MPC

Automate Regression Test

- Define performance evaluation metrics
- Develop test cases
- Build test suites
- Verification and validation

Generate and Verify Code

- SIL test
- Code generation
- Coverage test

ACC Performance Requirements

- Ego velocity control : $v \leq v_{\text {set }}$
where, v : ego velocity, $v_{\text {set }}$: set velocity
- Time gap control: $\quad \tau \geq \tau_{\text {min }}$
where, $\tau=\frac{c}{v}:$ time gap $=1.5 . .2 .2 \mathrm{sec}$
$\tau_{\min }:$ min time gap $=0.8 \mathrm{sec}$

$$
\tau=\frac{c}{v}
$$

Subject vehicle
(host vehicle, ego vehicle)

Lane Following Performance Requirements

- Vehicle should follow the lane center with allowable lateral deviation.

$$
\left|\left(d_{\text {left }}+d_{\text {right }}\right) / 2\right| \leq e_{\max }
$$

where,
$d_{\text {left }}$: lateral offset of left lane w.r.t. ego car

$d_{\text {right }}$: lateral offset of right lane w.r.t. ego car
$e_{\max }$: allowable lateral deviation
For example, $e_{\max }=($ LaneWidth - VehicleWidth $) / 2=(3.6-1.8) / 2=0.9 \mathrm{~m}$

Create Test Scenario using Driving Scenario Designer

Simulation with Simulink Model for Traffic Jam Assist

Test Description
Lead car cut in and out in curved highway (curvature of road $=1 / 500 \mathrm{~m}$)

Host car

initial velocity $=\mathbf{2 0 . 6 m} / \mathrm{s}$
HWT(Headway Time) to lead car = 4sec
HW(Headway) to lead car $=\sim 80 \mathrm{~m}$
v_set(set velocity for ego car) $=\mathbf{2 1 . 5} \mathbf{m} / \mathrm{s}$
Lead Car
Initially, fast moving car (orange) at $19.4 \mathrm{~m} / \mathrm{s}$
Passing car (yellow) at $19.6 \mathrm{~m} / \mathrm{s}$ cut in the ego path with HWT=2.3s, then cut out

Third Car

Slow moving car (purple) at $11.1 \mathrm{~m} / \mathrm{s}$ in the $2^{\text {nd }}$ lane

Simulation with Simulink Model for Traffic Jam Assist

Test Description
Lead car cut in and out in curved highway
(curvature of road $=1 / 500 \mathrm{~m}$)
Host car
initial velocity $=20.6 \mathrm{~m} / \mathrm{s}$
HWT(Headway Time) to lead car $=4 \mathrm{sec}$
HW(Headway) to lead car $=\sim 80 \mathrm{~m}$
v_set(set velocity for ego car) $=21.5 \mathrm{~m} / \mathrm{s}$
Lead Car
Initially, fast moving car (orange) at $19.4 \mathrm{~m} / \mathrm{s}$
Passing car (yellow) at $19.6 \mathrm{~m} / \mathrm{s}$ cut in the ego
path with HWT=2.3s, then cut out
Third Car
Slow moving car (purple) at $11.1 \mathrm{~m} / \mathrm{s}$
in the 2 nd lane

Architecture for ACC and Lane Following Controller

Architecture for ACC and Lane Following Controller

What is model predictive control (MPC)?

- Multi-variable control strategy leveraging an internal model to predict plant behavior in the near future
- Optimizes for the
 current timeslot while keeping future timeslots in account
- Mature control solution used in industrial applications
- Gaining popularity in automated driving applications to improve vehicle responsiveness while maintaining passenger comfort

What is model predictive control (MPC)?

How can MPC be applied to ACC and lane following control?

subject to:

$$
\begin{gathered}
\boldsymbol{D}_{\text {relative }} \geq \boldsymbol{D}_{\text {safe }} \\
\boldsymbol{a}_{\text {min }} \leq \boldsymbol{a} \leq \boldsymbol{a}_{\text {max }} \\
\boldsymbol{\delta}_{\min } \leq \boldsymbol{\delta} \leq \boldsymbol{\delta}_{\max }
\end{gathered}
$$

Internal MPC model for ACC and Lane Following Controller

Measured outputs (OV)

- Relative distance ($D_{\text {relative }}$)
-Ego velocity ($V_{e g o}$)
-Lateral deviation ($E_{\text {lateral }}$)
- Relative yaw angle ($E_{\text {yaw }}$)

Longitudinal model for ACC

Lateral model for Lane Following

Manipulated variables (MV)

- Acceleration (a)
- Steering angle (δ)

Measured disturbance (MD)

- MIO velocity ($V_{\text {mio }}$)
- Previewed road curvature (ρ)

Longitudinal and Lateral Model for MPC

- Longitudinal Model for ACC

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{V}_{x} \\
V_{x} \\
D_{\text {relative }}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{\tau} & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{V}_{x} \\
V_{x} \\
D_{\text {relative }}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{\tau} & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
V_{\text {mio }}
\end{array}\right]
$$

$\left[\begin{array}{c}D_{\text {relative }} \\ V_{x}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\dot{V}_{x} \\ V_{x} \\ D_{\text {relative }}\end{array}\right]$

- Lateral Model for Lane Following

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{c}
V_{y} \\
\dot{\varphi} \\
E_{\text {lateral }} \\
E_{\text {yaw }}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{2 C_{f}+2 C_{r}}{m V_{x}} & -V_{x}-\frac{2 C_{f} l_{f}-2 C_{r} l_{r}}{m V_{x}} & 0 & 0 \\
-\frac{2 C_{f} l_{f}-2 C_{r} l_{r}}{I_{z} V_{x}} & -\frac{2 C_{f} l_{f}^{2}+2 C_{r} l_{r}^{2}}{I_{z} V_{x}} & 0 & 0 \\
1 & 0 & 0 & V_{x} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{y} \\
\dot{\varphi} \\
E_{\text {lateral }} \\
E_{\text {yaw }}
\end{array}\right]+\left[\begin{array}{cc}
\frac{2 C_{f}}{m} & 0 \\
2 C_{f} l_{f} & 0 \\
I_{z} & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
\delta \\
V_{x} \rho
\end{array}\right] \\
& {\left[\begin{array}{c}
E_{\text {lateral }} \\
E_{\text {yaw }}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{y} \\
\dot{\varphi} \\
E_{\text {lateral }} \\
E_{\text {yaw }}
\end{array}\right]}
\end{aligned}
$$

Automated Driving System Toolbox
Design and Test Traffic Jam Assist, A Case study

Design ACC and Lane Following Controller

- Create driving scenario
- Synthesize sensor detection
- Include Vehicle Dynamics
- Design sensor fusion algorithm
- Design controller using MPC

Automate Regression

 Test- Define performance evaluation metrics
- Develop test cases
- Build test suites
- Verification and validation

Generate and Verify Code

- SIL test
- Code generation
- Coverage test

Simulation result assessment

Test Description
Lead car cut in and out in curved highway
(curvature of road $=1 / 500 \mathrm{~m}$)
Host car
initial velocity $=20.6 \mathrm{~m} / \mathrm{s}$
HWT(Headway Time) to lead car $=4 \mathrm{sec}$
HW(Headway) to lead car $=\sim 80 \mathrm{~m}$
v set(set velocity for ego car) $=21.5 \mathrm{~m} / \mathrm{s}$
Lead Car
Initially, fast moving car (orange) at $19.4 \mathrm{~m} / \mathrm{s}$
Passing car (yellow) at $19.6 \mathrm{~m} / \mathrm{s}$ cut in the ego
path with HWT 2.3 s, then cut out
Third Car
Slow moving car (purple) at $11.1 \mathrm{~m} / \mathrm{s}$
in the $2^{\text {nd }}$ lane

Performance Indicator

Performance Indicator

Performance indicator and dashboard in Simulink model

HW : Headway
HWT : Headway time
v_set : set velocity for ego car

Test scenarios (1/4)

No Test Name	Test Description	Host car	Lead car	litird car	Spec
1 ACC_01_ISO _TargetDiscriminationTest	Target Discrimination Test	$\begin{aligned} & \text { initial velocity }=30 \mathrm{~m} / \mathrm{s} \\ & \text { HWT }=2.2 \mathrm{sec} \\ & (H W=66 \mathrm{~m}) \\ & \text { v_set }=30 \mathrm{~m} / \mathrm{s} \end{aligned}$	constant accel $24 \mathrm{~m} / \mathrm{s} \rightarrow$ $27 \mathrm{~m} / \mathrm{s}$ @ $2 \mathrm{~m} / \mathrm{s}^{2}$ $V_{\text {end }}=27 \mathrm{~m} / \mathrm{s}(97.2 \mathrm{kph})$ \square \square	24m/s	$\begin{aligned} & \text { ISO } 15622 \\ & \text { ISO } 22178 \end{aligned}$
2 ACC_02_ISO AutoDecelTest	Automatic Deceleration Test	$\begin{aligned} & \text { initial velocity }=15 \mathrm{~m} / \mathrm{s} \\ & \text { HWT }=2.2 \mathrm{sec} \\ & (\mathrm{HW}=33 \mathrm{~m}) \\ & \text { v_set }=15 \mathrm{~m} / \mathrm{s} \end{aligned}$	initial velocity $=13.9 \mathrm{~m} / \mathrm{s}$ decelerates to full stop with $2.5 \mathrm{~m} / \mathrm{s}^{2}$	none	ISO 22178
3 ACC_03_ISO AutoRetargetTest	Automatic Retargeting Capability Test	$\begin{aligned} & \text { initial velocity }=15 \mathrm{~m} / \mathrm{s} \\ & \begin{array}{l} \mathrm{HWT}=2.2 \mathrm{sec} \\ (\mathrm{HW}=33 \mathrm{~m}) \\ \mathrm{v} \text { _set }=15 \mathrm{~m} / \mathrm{s} \end{array} \end{aligned}$	initial velocity $=13.9 \mathrm{~m} / \mathrm{s}$ Lead car changes lane @ HWT=3s to overtake slow moving car	constant speed = $2.1 \mathrm{~m} / \mathrm{s}$	ISO 22178

HW : Headway

HWT : Headway time
v_set : set velocity for ego car
Test scenarios (2/4)

HW : Headway

HWT : Headway time
v_set : set velocity for ego car
Test scenarios (3/4)

No	Test Name	Test Description	Host car	Lead car	Third car	Spec
6	LFACC_01_DoubleCurve DecelTarget (Similar with ACC_04_ISO CurveTest)	Automatic Deceleration Test	$\begin{aligned} & \text { initial velocity }=22 \mathrm{~m} / \mathrm{s} \\ & \text { HWT }=2 \mathrm{sec} \\ & (H W=44 \mathrm{~m}) \\ & \text { v_set }=22 \mathrm{~m} / \mathrm{s} \end{aligned}$	initial velocity $=22 \mathrm{~m} / \mathrm{s}$ Drive at a constant speed for about 11s, decrease speed by $3.5 \mathrm{~m} / \mathrm{s}$ in 2s (deceleration: $-1.8 \mathrm{~m} / \mathrm{s}^{2}$) and keep it const.	none	Real-world scenario
7	LFACC_02_DoubleCurve AutoRetarget_TooSlow (Similar with ACC_03_ISO AutoRetargetTest)	Automatic Retargeting Capability Test	$\begin{aligned} & \text { initial velocity }=15 \mathrm{~m} / \mathrm{s} \\ & H W T=2.8 \mathrm{sec} \\ & (H W=43 \mathrm{~m}) \\ & \\ & \text { v_set }=15 \mathrm{~m} / \mathrm{s} \end{aligned}$	initial velocity $=13.9 \mathrm{~m} / \mathrm{s}$ Lead car changes lane @ HWT=3s to overtake slow moving car	Slow moving car at constant speed = $2.1 \mathrm{~m} / \mathrm{s}$	~ISO 22178
8	LFACC_03_DoubleCurve AutoRetarget (Similar with ACC_03_ISO AutoRetargetTest)	Automatic Retargeting Capability Test	$\begin{aligned} & \text { initial velocity }=15 \mathrm{~m} / \mathrm{s} \\ & \\ & H W T=2.8 \mathrm{sec} \\ & (H W=43 \mathrm{~m}) \\ & \\ & \text { v_set }=15 \mathrm{~m} / \mathrm{s} \end{aligned}$	initial velocity $=13.9 \mathrm{~m} / \mathrm{s}$ Lead car changes lane @ HWT=3s to overtake slow moving car	Slow moving car at constant speed $=$ $10 \mathrm{~m} / \mathrm{s}$	~ISO 22178

HW : Headway
HWT : Headway time
v_set : set velocity for ego car

Test scenarios (4/4)

No	Test Name	Test Description	Host car	Lead car	Third car	Spec
9	LFACC_04_DoubleCurve StopnGo (Similar with ACC_05_StopnGo)	Stop and Go in curved highway	$\begin{aligned} & \text { initial velocity }=14 \mathrm{~m} / \mathrm{s} \\ & \\ & \text { HWT }=3.6 \mathrm{sec} \\ & (H W=50 \mathrm{~m}) \\ & \\ & \text { v_set }=14 \mathrm{~m} / \mathrm{s} \end{aligned}$	initial velocity $=14 \mathrm{~m} / \mathrm{s}$ Lead car slows down to $8 \mathrm{~m} / \mathrm{s}$ at $-1.7 \mathrm{~m} / \mathrm{s}^{2}$ and stay constant for 10 s , then speed up to $13 \mathrm{~m} / \mathrm{s}$ at $1.3 \mathrm{~m} / \mathrm{s}^{2}$	10 slow moving cars at $8 \mathrm{~m} / \mathrm{s}$ in the $3^{\text {rd }}$ lane 3 fast moving cars at $15 \mathrm{~m} / \mathrm{s}$ in the $1^{\text {st }}$ lane	Real-world scenario
10	LFACC_05_Curve CutlnOut	Lead car cut in and out in curved highway (curvature of road $=1 / 500 \mathrm{~m}$)	initial velocity $=20.6 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \mathrm{HWT}=4 \mathrm{sec} \\ & (\mathrm{HW}=\sim 80 \mathrm{~m}) \\ & \\ & \text { v_set }=21.5 \mathrm{~m} / \mathrm{s} \end{aligned}$	Initially, fast moving car (orange) at $19.4 \mathrm{~m} / \mathrm{s}$ Passing car (yellow) at $19.6 \mathrm{~m} / \mathrm{s}$ cut in the ego path with $\mathrm{HWT}=2.3 \mathrm{~s}$, then cut out Representativ	Slow moving car (purple) at $11.1 \mathrm{~m} / \mathrm{s}$ in the $2^{\text {nd }}$ lane ive test s	Real-world scenario cenario
	LFACC_06_Curve CutInOut_TooClose	Lead car cut in and out in curved highway (curvature of road $=1 / 500 \mathrm{~m}$)	initial velocity $=20.6 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \text { HWT }=4 \mathrm{sec} \\ & (H W=\sim 80 \mathrm{~m}) \\ & \text { v_set }=21.5 \mathrm{~m} / \mathrm{s} \end{aligned}$	Initially, fast moving car (orange) at $19.4 \mathrm{~m} / \mathrm{s}$ Passing car (yellow) at $19.6 \mathrm{~m} / \mathrm{s}$ cut in the ego path with $\mathrm{HWT}=1.5 \mathrm{~s}$, then cut out	Slow moving car (purple) at $11.1 \mathrm{~m} / \mathrm{s}$ in the $2^{\text {nd }}$ lane	Real-world scenario

Test Manager in Simulink ${ }^{\circledR}$ Test $^{\text {TM }}$

- Automate Simulink model testing using test cases with pass-fail criteria

Generate

Requirements Editor

Test Report with baseline parameter set for 11 test cases

Report Generated by Test Manager	
Title： Author：	ACCAndLaneFollowing（baseline） Seo－Wook Park
Date：	21－Apr－2018 16：01：50
Test Environment	
	$\underset{\substack{\text { Pcwinve4 } \\ \text {（R2018 } 18)}}{ }$

Note）Baseline parameter set was tuned based on a single test scenario．

Summary		
Name	Outcome	Duration （Seconds）
－TestScenarios Baseline	8030	565
\square ACCTest	3020	210
目 ACC 01 ISO TargetDiscriminationTest	0	35
目 ACC 02 ISO AutoDecelTest	\otimes	22 32
目 ACC 04 ISO CurveTest	\bigcirc	43
目 ACC 05 StopnGo	\bigcirc	73
\square LFACCTest	5010	354
目 LFACC 01 DoubleCurve DecelTarget	\bigcirc	43
目 LFACC 02 DoubleCurve AutoRetarget Toos low	\otimes	36
目 LFACC 03 DoubleCurve AutoRetarget	\bigcirc	65
目 LFACC 04 DoubleCurve StopnGo	θ	111
目 LFACC 05 Curve Cutinout	0	48
目 LFACC 06 Curve Cutinout Tooclose	\bigcirc	49

Fine-tune control parameters (1/3)

Test Description

Automatic Retargeting Capability Test

Host car
initial velocity $=15 \mathrm{~m} / \mathrm{s}$
HWT $=2.2 \mathrm{sec}(H W=33 \mathrm{~m})$
v_set $=15 \mathrm{~m} / \mathrm{s}$
Lead Car
initial velocity $\mathbf{= 1 3 . 9 m} / \mathbf{s}$
Lead car changes lane @ HWT=3s to overtake slow moving car

Third Car

constant speed $=2.1 \mathrm{~m} / \mathrm{s}$
Spec
ISO 22178

LanefollowingTestBenchExample - Simulink

Fine-tune control parameters (1/3)

Test Description

Automatic Retargeting Capability Test

Host car
initial velocity $=15 \mathrm{~m} / \mathrm{s}$
$H W T=2.2 \mathrm{sec}(H W=33 \mathrm{~m})$
v_set $=15 \mathrm{~m} / \mathrm{s}$
Lead Car
initial velocity $=13.9 \mathrm{~m} / \mathrm{s}$
Lead car changes lane @ HWT=3s to overtake slow moving car

Third Car
constant speed $=2.1 \mathrm{~m} / \mathrm{s}$
Spec
ISO 22178

Fine-tune control parameters (2/3)

Test Description
Stop and Go in highway

Host car
initial velocity $=27 \mathrm{~m} / \mathrm{s}$
HWT $=1.5 \mathrm{sec}(H W=40.5 \mathrm{~m})$
v_set $=27 \mathrm{~m} / \mathrm{s}$
Lead Car
initial velocity $=\mathbf{2 7} \mathbf{m} / \mathbf{s}$

Third Car
8 slow moving cars at $12 \mathrm{~m} / \mathrm{s}$
in the second lane
Spec
Real-world scenario

LanefollowingTestBenchExample - Simulink
File Edit View Display Diagram Simulation Analysis Code Tools Help

Fine-tune control parameters (2/3)

Test Description

Host car
initial velocity $=27 \mathrm{~m} / \mathrm{s}$
HWT $=1.5 \mathrm{sec}(H W=40.5 \mathrm{~m})$
v_set $=27 \mathrm{~m} / \mathrm{s}$
Lead Car
initial velocity $=\mathbf{2 7} \mathbf{m} / \mathbf{s}$

Third Car
8 slow moving cars at $12 \mathrm{~m} / \mathrm{s}$
in the second lane
Spec
Real-world scenario

Fine-tune control parameters (3/3)

Test Description

Automatic Retargeting Capability Test

Host car
initial velocity $=15 \mathrm{~m} / \mathrm{s}$
$H W T=2.8 \mathrm{sec}(H W=43 \mathrm{~m})$
v_set $=15 \mathrm{~m} / \mathrm{s}$
Lead Car
initial velocity $=\mathbf{1 3 . 9} \mathbf{m} / \mathbf{s}$
Lead car changes lane @ HWT=3s to overtake slow moving car

Third Car
Slow moving car at constant speed,
$2.1 \mathrm{~m} / \mathrm{s}$
Spec
~ISO 22178

M laneFollowingTestBench Example *- Simulink

(4) LanefollowingTestenchexample \downarrow -

Fine-tune control parameters (3/3)

Test Description
Automatic Retargeting Capability Test
Host car
$\begin{aligned} & \text { initial velocity }=15 \mathrm{~m} / \mathrm{s} \\ & \text { HWT }=2.8 \mathrm{sec}(H W=43 \mathrm{~m}) \\ & \text { v_set }=15 \mathrm{~m} / \mathrm{s} \end{aligned}$
initial velocity $=13.9 \mathrm{~m} / \mathrm{s}$
Lead car changes lane @ HWT=3s to overtake slow moving car
Third Car
Slow moving car at constant speed, $2.1 \mathrm{~m} / \mathrm{s}$
Spec
~ISO 22178

Baseline vs. Fine-tuned parameters

Parameter Name	Description	Baseline	Fine-tuned
assigThresh	Detection assignment threshold for multiObjectTracker	50	20
time_gap	ACC time gap (sec)	1.5	2.0
default_spacing	ACC safe distance margin (m)	0	10
min_ac	Minimum acceleration $\left(m / s^{\wedge} 2\right)$	-3.0	-3.5

Test Report with fine-tuned parameter set for 11 test cases

Automated Driving System Toolbox
Design and Test Traffic Jam Assist, A Case study

Design ACC and Lane Following Controller

- Create driving scenario
- Synthesize sensor detection
- Include Vehicle Dynamics
- Design sensor fusion algorithm
- Design controller using MPC

Automate Regression Test

- Define performance evaluation metrics
- Develop test cases
- Build test suites
- Verification and validation

Generate and Verify Code

- SIL test
- Code generation
- Coverage test

Simulation with SIL mode

Code Generation Report

Aggregated Code Coverage Report

(1)	
Report Generate	
Title:	ACCAndLane
Author:	Seo-Wook Pa
Date:	26-Apr-2018
Test Environment	
Platform:	PCWIN64
MATLAB:	(R2018a)

tatic boolean_T LFRefMdl_objectTrack_checkPromotion(const 1779 driving_internal_objectTrack_LFRefMdl_T *track)
1780 \{
1781 boolean_T toPromote;
1782 real_T history;
1783 int32_T b;
1784 boolean_T track_data[50];
1785 int32_T track_size[2];
1786 if (track->ObjectClassID ! = 0.0)
(Promote
1787 toPromote = true;
1788 \} else \{
1789 if ((track->pUsedHistoryLength < track->ConfirmationParameters[1]) ||
... Controller
MPC Controller
MPC
- optimizer
Safe distance
Estimate Lane Center
Center from Left
. Center from Left and
- Center from Right
MATLAB Function
Preview curvature
Tracking and Sensor Fus
Clock
. Counter Limited
Find Lead Car
Decisions analyzed:

(track->pUsedHistoryLength < track->ConfirmationParameters[1])	$\\|$
false	rtIsNaN(track->ConfirmationParameters[1])
true	50%

Conditions analyzed:
Conditions analyzed:

Description:	True	False
track->pUsedHistoryLength < track->ConfirmationParameters[1]	0	13038
rtIsNaN(track->ConfirmationParameters[1])	0	13038

MC/DC analysis (combinations in parentheses did not occur)

decision outcomes:	True	False
Conditions:	Out	Out
track->pUsedHistoryLength < track->ConfirmationParameters[1]	(Tx)	FF
rtIsNaN(track->ConfirmationParameters[1])	(FT)	FF

Automated Driving System Toolbox

Design and Test Traffic Jam Assist, A Case study

Design ACC and Lane

 Following Controller- Create driving scenario
- Synthesize sensor detection
- Include Vehicle Dynamics
- Design sensor fusion algorithm
- Design controller using MPC

Automate Regression Test

- Define performance evaluation metrics
- Develop test cases
- Build test suites
- Verification and validation

Generate and Verify Code

- SIL test
- Code generation
- Coverage test

Thennk you for Mour extention ix

Email: seo-wook.park@mathworks.com

