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Goal: We hope you walk away knowing the answer to these questions

« What is reinforcement learning and why should | care about it?
= How do | set it up and solve it? [from an engineer’s perspective]

= What are some benefits and drawbacks?
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Why should you care about reinforcement learning?

Teach arobot to follow a straight line using camera data
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Let’s try to solve this problem the traditional way
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What is the alternative approach?
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What is the alternative approach?
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What is reinforcement learning?
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Reinforcement Learning vs Machine Learning vs Deep Learning

[ Machine Learning }

Unsupervised . . Reinforcement
Learning Supervised Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]
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Reinforcement Learning vs Machine Learning vs Deep Learning

[ Machine Learning }
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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A Practical Example of Reinforcement Learning
Training a Self-Driving Car

= Vehicle’s computer learns how to drive...
/ AGENT \ (agent)
STATE ACTION = using sensor readings from LIDAR, cameras,...
g Poicy pum (state)
TPolicy update = that represent road conditions, vehicle position,...
Reinforcement (environment)
gy Leaning = by generating steering, braking, throttle commands,...

\ Algoithm / (action)

= based on an internal state-to-action mapping...

REWARD (pOIle)

= that tries to optimize driver comfort & fuel efficiency...
(reward).

ENVIRONMENT

= The policy is updated through repeated trial-and-error by a
reinforcement learning algorithm
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A Practical Example of Reinforcement Learning
A Trained Self-Driving Car Only Needs A Policy To Operate

= Vehicle’s computer uses the final state-to-action mapping...

(policy)
- = to generate steering, braking, throttle commands,...
POLICY (action)
= based on sensor readings from LIDAR, cameras,...
(state)

= that represent road conditions, vehicle position,...

(environment)
STATE ACTION

By definition, this trained policy is
ENVIRONMENT optimizing driver comfort & fuel
efficiency
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A deep neural network trained using reinforcement learning is a
black-box model that determines the best possible action

/ Deep Neural Network Policy \

Current State > (captures environment

(Image, Radar, dynamics...somehow)
Sensor, etc.)

> Next
Action

Previous
Action >

(optional) K /

By representing policies using deep neural networks, we can solve problems
for complex, non-linear systems (continuous or discrete) by directly using
data that traditional approaches cannot use easily
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How do | set it up and solve it?
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Reinforcement Learning Workflow

Environment Reward Policy

Training
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Steps in the Reinforcement Learning Workflow

Environment Reward Policy Agent Training Deploy
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Reinforcement Learning vs Controls

Control system Reinforcement learning system
/ AGENT )
-':-/\ ERROR CONTROLLER PLANT > — m—' —
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Measurement Observation
Plant

Controller

Environment

Policy

Reinforcement learning has parallels to control system design

AN
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Pop Quiz: When would you use Reinforcement Learning?

Controller Computational Cost Computational Cost
Capability in Training/Tuning in Deployment

Low Low Low

Model Pred Control High Low High

Reinforcement Learning High High Medium

Reinforcement learning might be a good fit if

= An environment model is available (trial & error on hardware can be expensive), and
= Training/tuning time is not critical for the application, and

= Uncertain environments or nonlinear environments
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Automotive Applications

= Controller Design

= Lane Keep Assist

= Adaptive Cruise Control
- Path Following Control

= Trajectory Planning

Knee joint ———»

|
Hip joint ———————% l '

Ankle joint
Train DDPG Agent to Train Biped Robot to Walk Train DDPG Agent for
Control Flying Robot Using DDPG Agent Adaptive Cruise Control
Train a reinforcement learning agent Train a reinforcement learning agent Train a reinforcement learning agent
to control a flying robot model to control a biped walking robot for an adaptive cruise control
modeled in Simscape Multibody application

Train DQN Agent for Lane
Keeping Assist

Train a reinforcement learning agent
for a lane keeping assist application

—
Train DDPG Agent for Path
Following Control

Train a reinforcement learning agent
for a lane following appiication
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Reinforcement Learning Toolbox PR
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Takeaways

4\ MathWorks



4\ MathWorks:

Simulation and Virtual Models are a Key Aspect of Reinforcement
Learning |

= Reinforcement learning needs a |lot of data
(sample inefficient)

— Training on hardware can be prohibitively
expensive and dangerous

- Virtual models allow you to simulate conditions -\ @
hard to emulate in the real world — |

— This can help develop a more robust
solution

+ Many of you have already developed MATLAB [z
and Simulink models that can be reused
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Pros & Cons of Reinforcement Learning

Pros

cons

No need to collect data before training

A lot of simulation trials required

Opens up Al applications intractable today

Training may not converge

Complex end-to-end solutions can be developed
(e.g. camera input— car steering wheel)

Reward signal design, network layer structure &
hyperparameter tuning can be challenging

Suitable for uncertain, nonlinear environments

No performance guarantees

Virtual models allow simulations of varying
conditions and training parallelization

Further training might be necessary after
deployment on real hardware

Everyone is excited about it as it appears to be a silver bullet for all problems
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Resources

- Examples for automotive and
autonomous system applications

- Documentation written for
engineers and domain experts

= Tech Talk video series on
reinforcement learning concepts for
engineers

4\ MathWorks:

Hip joint ——————»"

Knee joint ——»

Ankle joint
Ko X ¢
Train DDPG Agent to Train Biped Robot to Walk
Control Flying Robot Using DDPG Agent
Train a reinforcement learning agent Train a reinforcement learn 1
to control a flying robot model to con ‘

£
4\ MathWorks — \gent for Lane Train DDPG Agent for Path
Documentafion Al Exsmplss  Morew _ N sist Following Control
o.. fment learning agent Train a reinforcement learning agent
g assist appiication for a lane following appiication
@
F

mmmmmmmmmmmmmmmmmmm

Policies and Value Functions

AAAAAA

Policy Deployment




Extra Slides

4\ MathWorks



