ASML

Facing Moore's Law with Model-Driven R&D

Markus Matthes

Executive Vice President Development and Engineering, ASML

Eindhoven, June 11th, 2015

Contents

- Introducing ASML
- Lithography, the driving force behind Moore's Law
- How to continue driving Moore's law?
- Summary and conclusions

Public Slide 3 June 2015

Introducing ASML

It's hard to imagine a world without chips

Global market 2014: 221 billion chips, \$333 billion

Slide 4 June 2015

ASML makes the machines for making those chips

Public Slide 5 June 2015

- Lithography is the critical tool for producing chips
- All of the world's top chip makers are our customers
- 2014 sales: €5.9 bln
- People: ~14,000 FTEs

Founded in 1984 as a spin-off from Philips...

Public Slide 6 June 2015

...with global presence!

Public Slide 7 June 2015

Over 70 sales and service offices located worldwide

Source: ASML Q1 2015

Public Slide 8 June 2015

Moore's law

Driving the semiconductor industry: Moore's Law

Public Slide 9 June 2015

Fig. 2 Number of components per integrated function for minimum cost per component extrapolated vs time.

Gordon Moore (1965): Number of transistors per chip doubles every year.

Later adjusted to two years, the trend has held for half a century

Moore's Law makes chips cheaper...

Public Slide 10 June 2015

... and more energy-efficient

Computations per Kilowatt hour double every 1.5 years

Public Slide 11 June 2015

Public Slide 12 June 2015

Lithography, the driving force behind Moore's Law

A chip is made of dozens of layers

Public Slide 13 June 2015

The manufacturing loop

Public Slide 14 June 2015

Lithography is critical for shrinking transistors

Public Slide 15 June 2015

Like a photo enlarger of old, lithography forms the image of chip patterns on a wafer

Public Slide 16 June 2015

The ASML ecosystem makes this happen

Open Innovation from design to manufacturing

Slide 17 June 2015

Customers
Semiconductor producers

Co-solution network
Mask, Resist, Wafer track
Wafer processing

Supplier and partner network Optics, measurement systems, parts, subsystems

Virtual innovation network
Academia, technology providers, research institutes

Open Innovation from design to manufacturing

Slide 18

Slide 19 June 2015

Increasing complexity, increasing challenges

Scanner functionality and hardware become increasingly more complex

Public Slide 20 June 2015

The world is far from perfect at (sub-)nanometer level

- Flat is no longer flat, straight is no longer straight
- Variations due to flow, temperature and humidity variations
- Sensitivity to dynamics, magnetics, and pressure differences

Physics, mathematics and software correct hardware imperfections at (sub-)nanometer level

Public Slide 21 June 2015

Example: Lens Model

- Laser beam heats up lens
- A sensor measures the lens aberrations
- The lens model calculates how to adjust the lens (within 12 ms)
- Lens is adjusted and wafer is exposed in optimum state

- Lens model implemented in MATLAB
- Timing constraints met by code optimization together with MathWorks: 39% speed gain

Public Slide 22 June 2015

Function	Original MATLAB Code	Best solution in MATLAB	Speedup Gain
qpGTikh	1.331 s	0.613 s	54 %
analytic center	3.206 s	2.549 s	21 %
Total	4.403 s	2.693 s	39 %

ASML

ASML software development reflects increasing complexity

Public Slide 23 June 2015

- TWINSCAN software consists of 40 million lines of code
- More than 500,000 lines of MATLAB code in TwinScan archive
- 20+ computing nodes running more than 200 processes

- Our software supports old as well as new systems
 - SW archive embeds > 10 years of development history, thousands of man years of work

Public Slide 25 June 2015

How to continue driving Moore's law?

The other side of Moore's medal...

Development & engineering costs rapidly growing

Slide 26 June 2015

1980s:

PAS 2000/5000

R&D: 50 mln €

1990s:

PAS 5500

R&D: 400 mln €

TWINSCAN

R&D: 1500 mln €

R&D: > 2000 mln €

How to continue driving Moore's law and ensure customer profitability, while keeping R&D cost under control?

Public Slide 27 June 2015

Investing in early development phase leads to gain in product maturing phase and earlier customer profitability

But how to invest more in the early development phase?

Public Slide 28 June 2015

Let us look at a Development and Engineering work flow

Different approach needed to reduce development effort

Model Driven Engineering vision

Public Slide 31 June 2015

Slide 32 June 2015

Summary and conclusions

Public Slide 33 June 2015

- Moore's Law has shaped the world as we know it
- Lithography has enabled and driven Moore's Law
- "Moore's law for product development" is not sustainable
- To continue driving Moore's law, the R&D way of working needs to evolve towards a system-wide model driven engineering approach
- Directions pursued are: higher abstraction levels, executable specifications (models instead of documents), formal model verification and design time validation, automatic code generation
- Further elaboration of industry standards is desirable to easily connect solutions across the development chain
- Strategic partnerships, such as between ASML and MathWorks, are instrumental to achieve this

ASML