
Explore PASSIVE rotations and EULER rates

Bradley Horton : 01-Mar-2016, bradley.horton@mathworks.com.au

Introduction:

A Passive rotation matrix, converts the co-ordinates of a point expressed in a fixed G-frame, into the co-
ordinates of the same point expressed in the new B-frame.

An example of this concept is shown below

An example of 3 successive PASSIVE rotations

Say we start with a G-frame. We're going to apply 3 LOCAL axes rotations which will result in a newly
orientated frame called the B-frame.

Assume that we apply these 3 successive rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis , aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis , aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis , aka ROLL

We can express a vector defined in the G axis into it's corresponding description in the B axis, using a
PASSIVE rotation matrix, ie:

 vB = R3X() * R2Y() * R1Z() * vG

OR, in a more compact form as:

 vB = bRg * vG

Create a passive rotation object

syms phi theta psi
OBJ_P = bh_rot_passive_G2B_CLS({'D1Z', 'D2Y', 'D3X'}, [phi, theta, psi], 'SYM')

OBJ_P =
 bh_rot_passive_G2B_CLS with properties:

 ang_units: SYM
 num_rotations: 3
 dir_1st: D1Z
 dir_2nd: D2Y
 dir_3rd: D3X
 ang_1st: [1x1 sym]
 ang_2nd: [1x1 sym]
 ang_3rd: [1x1 sym]

Here are the PASSIVE rotation matrices

R1 = OBJ_P.get_R1

R1 =

R2 = OBJ_P.get_R2

R2 =

R3 = OBJ_P.get_R3

R3 =

Calculate the Direction Cosine Matrix

Recall we earlier said:

bRg = R3 * R2 * R1

bRg =

And it's nice to know I can automatically convert this into a MATLAB function.

NOTE: we're specifying the order of the input variables for the function that gets generated.

matlabFunction(bRg,'File','bh_autogen_bRg','Optimize',false, 'Vars', {'phi','theta', 'psi'});

% look at the first 6 lines of this autogenerated file
dbtype('bh_autogen_bRg', '1:6')

1 function bRg = bh_autogen_bRg(phi,theta,psi)
2 %BH_AUTOGEN_BRG
3 % BRG = BH_AUTOGEN_BRG(PHI,THETA,PSI)
4
5 % This function was generated by the Symbolic Math Toolbox version 7.0.
6 % 07-Mar-2016 16:47:46

Explore EULER rates

As we apply these local frame rotations, we can represent the angular rates of the rotating rames in the
LOCAL frame co-ordinates. These local frame co-ordinates can then be converted into co-ordinates
expressed in the final B frame.

For example, during each of the local axes rotations we can think of there being a START frame and an
END frame:

START END Angular rate vector

frame frame associated with rotation

R1Z(phi) G_frame a_frame [0 0 phi_dot]_G

R2Y(theta) a_frame c_frame [0 theta_dot 0]_a

R3X(psi) c_frame B_frame [psi_dot 0 0]_c

We can express each of the local frame angular velocities into their corresponding components in the B
frame - and we'll use PASSIVE rotation matrices to do this:

syms phi_dot theta_dot psi_dot

aRg = R1;
cRa = R2;
bRc = R3;

wb_part_1 = bRc * cRa * aRg * [0;0;phi_dot] % convert local G into B

wb_part_1 =

wb_part_2 = bRc * cRa * [0;theta_dot;0] % convert local a into B

wb_part_2 =

wb_part_3 = bRc * [psi_dot;0;0] % convert local c into B

wb_part_3 =

The total angular velocity expressed in the BODY B frame is therefore

We can now construct the total angular velocity vector expressed in components of the final B frame.

wb = wb_part_1 + wb_part_2 + wb_part_3

wb =

We can write the angular velocity vector as a MATRIX equation

Let's say that:

We can write a matrix equation of the form A.x = b that describes the relationship between the body
rates and the Euler rates:

syms p q r

 x = [phi_dot, theta_dot, psi_dot].'

x =

[A,b] = equationsToMatrix(wb(1)==p, ...
 wb(2)==q, ...
 wb(3)==r, ...
 x)

A =

b =

ATTENTION: The SINGULARITY between BODY rates and EULER rates

From the Matrix equation computed above there is actually an angle that causes the determinant of A to
be ZERO, and hence prevents us from solving for the Euler rates iff we know the body rates .

The angle that causes this problem is the rotation about the local Y axis, ie: the angle phi. Specifically it
is when phi = 90 degrees.

We can see this by first computing the determinant

det_A = simplify(det(A))

det_A =

And then solving for its roots.

solve(det_A ==0)

ans =

So this tells us that as soon as our vehicle has a pitch angle of 90 degrees, that our chosen Euler angle
sequnce simply canNOT be used to convert body rates into Euler rates.

If you think your vehicle will pitch by 90 degrees, then you'll need to consider an alternate form of
describing your vehicle's pose (eg: quaternions, or integrating directly the DCM)

Let's compute Euler rates from our body rates

Assuming our vehicle does NOT have a pitch angle of 90 degrees, then we can use the results of the
previous section to calculate the Euler rates from our body rates .

euler_rates = inv(A) * [p; q; r];
euler_rates = simplify(euler_rates)

euler_rates =

We can write the Euler rates vector as a MATRIX equation

Similarly to what we did earlier we can write a matrix equation that describes the relationship between
the body rates and the Euler rates:

 x = [p,q,r].'

x =

[K,b] = equationsToMatrix(euler_rates(1)==phi_dot, ...
 euler_rates(2)==theta_dot, ...
 euler_rates(3)==psi_dot, ...
 x)

K =

b =

