Inertia properties of a 3 blade propeller

What we're going to do:

In this FAQ, we're going to explore the inertia properties of a 3 bladed propeller.
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WHY are we doing this?

* We get to practice the calculation of Inertia matrices for "rotated" bodies, eg: parallel axis theorem and
PASSIVE rotation matrices.
* The 3 bladed propeller has some inertia matrix properties that will blow your mind !!
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Consider a thin Rectangular plate:

Before we start looking at the 3 bladed propeller, let's quickly review the inertia matrix of a thin
rectangular plate. We're doing this because we'll represent a propeller blade as a thin rectangular plate.
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In this figure we have a G-frame attached to the Centre of mass of the plate, Let's calculate the inertia of
the plate about a parallel frame that is attached at point 0.

syms Lx Ly m

% create an instance of a thin rectangular plate class
TRP_0BJ = inertia thin rect plate CLS(Lx, Ly, m);

% look at the Inertia matrix for the G-frame
TRP_0BJ.get I()

ans =
w’m 0
12
0 szm 0
12
0 0 m (LX2+Ly2)

Now let's apply the Parallel axis theorm to compute the Inertia about the O-frame:

% the inertia relative to the G-frame
gI = TRP O0BJ.get I();

% define the position of G relative to 0
r col = [Lx/2, 0, 0]."';

% create an instance of the inertia parallel local to desired CLS class
0BJ = inertia parallel local to desired CLS(r col, gI, m);

% compute the INERTIA relative to the 0-frame
I LOCAL blade = 0OBJ.calc I GLOB()

I LOCAL blade =

2

Ly~ m 0 0
12
0 szm 0
3
0 0 szm + m (Lx2+Ly2)
4 12

Now back to the main problem:

Recall what our main problem is. We want to compute the inertia of the 3-bladed propeller relative to the
XYZ frame shown below:
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So we can now define IBLUE :

OK, so from our review of the thin rectangular plate AND the application of the paralle axis theorm, we
now have the inertia matrix for the BLUE blade.

% This is the inertia for our BLUE blade
I BLUE blade = I LOCAL blade;

and [

So how do we compute CREEN -

IPINK

As a start let's consider the PINK blade.
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In the above diagram we have 2 frames: the G-frame and the B-frame. Initially both of the frames are
co-incident. We then rotate the B-frame by an angle 6 to it's new position.

What we want to do now, is to calculate the inertia matrix of the PINK blade relative to the new position
of the B-frame shown in the right hand figure, ie: ®I. What we know already is the inertia of the pink
blade relative to it's local G-frame, ie: “I.



So how do we do calculate ®I? Well the answer starts with our equations for angular momentum.
Consider the following:

fw = PR x ‘w =  Sw="R xfw
BL=PR xS =  CL=PR xPL
Now let's focus on the angular momentum described in the G-frame
6L = I x G
(BRGT x BL) = 6] x (BRGT x Bw)
BL = (PR, x I x °R} ) x Pw
BL=BIxB»  where  ®I= ("R xCIx®R))

The BIG result here is this one: BI = (®R_ x °I x BRz) . At the heart of this derivation is a PASSIVE

rotation matrix BRG. This rotation matrix allows us to compute the components of a vector in the B-frame,
when we already know the components of the same vector in the G-frame, ie:

- -
BV=BRGXGV

"think" that the B-frame has rotated relative to the G-frame, ie:

YB Ve O

Now let's consider the PINK blade:

As discussed in the previous section, we have a G-frame and a B-frame. Initially the B and G frames are
coincident. The B-frame is then rotated by an angle 6 around the Z-axis as shown in the figure below. In

our case we have 8 = 240° (the angle is positive because of our right hand rule)



% create a PASSIVE rotation object
syms theta
pasR 0BJ = bh rot passive G2B CLS({'D1z'}, [ theta ], 'SYM');

% extract the PASIVE rotation matrix bRg
bRg = pasR 0BJ.get R1
bRg =
cos(6) sin(6) 0
- sin(0) cos(@) 0
0 0 1

% In our case we have theta = 240 degrees (== 240 * (pi/180) radians)
bRg = subs(bRg, theta, 240*pi/180)

bRg =
1 V3
2 2
Vio_1 o
2 2
0 0 1

% now compute bI for the PINK blade
gl I LOCAL blade;
I bRg * gI * bRg.'

PINK blade

I PINK blade =

2 2
mLx™ 4 mLy o 0
4 48 1
2 2
01 mLx™ 4 mLy 0
12 16
0 0 Lx% m +m (Lx2+Ly2)
4 12
where

o. = \/§szm_ \/§Ly2m
1 12 48



Now let's consider the GREEN blade:

To calculate the inertia of the GREEN blade relative to the new B-frame, we apply the same analysis as
we did with the pink blade.

% extract the PASIVE rotation matrix bRg
bRg = pasR 0BJ.get R1
bRg =
cos(@) sn1(9) 0
- sh1(9) cos(@) 0
0 0 1

% In our case we have theta = 120 degrees (== 120*pi/180 radians)
bRg = subs(bRg, theta, 120*pi/180)

bRg =
1 V3
2 2
V3 _1
2 2
0 0 1

(o)

% % now compute bI for the GREEN blade
gl I LOCAL blade;
I

GREEN blade bRg * gI * bRg.'

I GREEN blade =



2 2
mLx™ 4 mLy o 0

4 48 1
2 2
0-1 mLx™ L mLy 0
12 16
0 0 szm +m (Lx2+Ly2)
4 12
where

— \/§L 2m _ \/§Lx2m
o. = Y
1 48 12

Now assemble the inertias of all three blades:
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I sys config 1 = I BLUE blade + I PINK blade + I GREEN blade;
simplify(I sys config 1)

ans =
m (4 L>;2+Ly2) 0 0
0 m (4LX2+Ly2) 0
8
0 0 m (4Lx2+Ly2)
4

Note from the above system INERTIA matrix that our product of inertia terms (eg: I, ,etc) are all

IXY 1Yz
ZERO. And note also that the L, and L, moment of inertia terms are identical. This is cool ! .... Butis it
"lucky" cool or is there something deeper here that we need to explore ?



Consider an arbitrarily orientated propeller:

Consider the following arbitrarily orientated propeller system:

1Y

.+ 0= a+240°

(o)

% create a PASSIVE rotation object

syms alpha

GREEN OBJ = bh rot passive G2B CLS({'D1z'}, [ alpha 1, 'SYM');
PINK OBJ = bh_rot_passive G2B_CLS({'D1Z'}, [ (alpha + 120*pi/180) ], 'SYM');
BLUE_OBJ = bh_rot_passive G2B _CLS({'D1Z'}, [ (alpha + 240*pi/180) ], 'SYM');

’

% Have a look at each of the PASSIVE rotation matrices bRg
GREEN bRg = GREEN 0OBJ.get R1

GREEN bRg =
cos(a) sn1(a) 0
—sin(a) cos(a) 0
0 0 1
PINK bRg = PINK OBJ.get R1
PINK bRg =

cos(a+—%§) sin(a-r%;)

0
— sin(a + %ﬂ) cos(a + %”) 0
0 1

BLUE bRg = BLUE OBJ.get Rl

BLUE bRg =



Cos(a+-%g) sin(a-fﬁg) 0
—sin(a + 4?”) cos(a + %”) 0
1

0 0

efine a function for computing the XY frame inertia for each blade
h = @(bRg, Ig)(bRg * Ig * bRg.');

—+% QO

I
% calculate the inertias relative to the X,Y frame
I I LOCAL blade;

I GREEN blade I fh(GREEN bRg, gI)

I PINK blade = I fh( PINK bRg, gI);
I BLUE blade = I fh( BLUE bRg, gI);

(e}

% combine for the SYSTEM inertia matrix
I sys config arb = I GREEN blade + I PINK blade + I BLUE blade;
simplify(I sys config arb)

ans =
, 2 2
m (4Lx"+Ly") 0 0
8
0 m (4LX2+Ly2) 0
8
0 0 m (4Lx2+Ly2)

4

Note from the above system INERTIA matrix, that even when the propeller is placed in an arbitrary

pose, the product of inertia terms (eg: L, , I, , etc) are still all ZERO and our 2 moment of inertia terms
I, and [, are still identical (ie: I, = L. ). Note also that the pose angle a does NOT appear in the

Inertia matrix ! - so regardless of the in plane orientation of the propeller, the INERTIA matrix is always
the same !

So07? - So the 3 bladed propeller has INERTIA properties that are similar to a thin circular disc.

This is truly an amazing result !

FYI: Here are the inertia values fro a circular disk (see REF)


https://en.wikipedia.org/wiki/List_of_moments_of_inertia




