
Test Driven Development in Agile

Model-Based Design

Paul Urban

Marco Dragic

2

Paul UrbanMarco Dragic

Senior Product Manager

Simulink Verification and Validation

Senior Product Manager

Simulink Platform

3

Building Algorithms in Everything…

4

Building Algorithms in Everything…

…but how do you deliver faster, meet

changing customer requirements,

and ensure quality?

BACKLOG
DEFINITION

OF DONE
DELIVERY

1. Create a test

2. Implement enough for test to pass

3. Refactor

Test Driven Development Cycle

5

Requirements

Simulink provides an integrated framework for TDD

Test

Implementation

6

Starting with high level customer requirements

7

User Requirements:

• Both driver and passenger can control the window

• Window stops closing if an object is detected

• Window should have option to fully open and close

Capturing requirements

8

Viewing details

9

Requirement

Details

Organizing and creating requirement hierarchies

10

Requirement

Hierarchies

Specifying details

11

Description / Rationale Fields

Links

Pane

1. Create a test

2. Implement enough for test to pass

3. Refactor

12

Main Model

Test Harness

Component

under test

▪ Isolate Component Under Test

Test

Harnesses

▪ Author, manage, organize tests

Test

Manager

Test Browser

Test Results

Reports

▪ Specify test inputs, expected

outputs, and tolerances

Test

Authoring

Signal Editor

Temporal Assessments

Test Sequence

Time-Series Data

Develop, manage, and execute simulation-based tests
Simulink Test

13

Creating a Test Harness to isolate Component Under Test

14

Specify properties of the Test Harness

15

Specify inputs

16

Inputs

Test Sequence

MAT file (input)

Excel file (input)

Signal Editor

Outputs

Specify outputs

17

AssessmentsMAT file Excel

Created Test Harness to isolate Component Under Test

18

Test Harness

Main Model

Authoring tests using Signal Editor

19

Use templates and wizards to automate test case creation

20

Use templates and wizards to automate test case creation

21

Create Simulation Test and link to requirement

22

Link to requirements

Specify model to test

Test fails due to compilation error

23

1. Create a test

2. Implement enough for test to pass

3. Refactor

24

Implement enough to get test to pass

25

Linking implementation to requirements

26

Managing artifacts with source control directly from Projects

27

Scale and automate testing with Continuous Integration

▪ Schedule automatic code

and model testing

▪ Access MATLAB Plugin for

Jenkins

28

Executing test with Test Manager

▪ Group into suites

and test files

▪ Execute individual

or batch

29

Analyzing and debugging results with Test Manager

30

▪ View result summary

▪ Debug using Simulation

Data Inspector

▪ Archive, export, and

report results

Executing all tests until they pass

31

Measuring testing completeness with coverage

▪ Identify testing gaps

▪ Missing requirements

▪ Unintended functionality

▪ Design errors

32

Simulink

Stateflow

Code

Generating test reports for audits and reviews

33

1. Create a test

2. Implement enough for test to pass

3. Refactor

34

Refactoring

▪ Refactoring is the process of changing software in such a way that it

does not alter the external behavior of the code yet improves its internal

structure

35

Refactoring takes many shapes and forms

• Rearranging Layout

36

Refactoring takes many shapes and forms

• Rearranging Layout

37

Refactoring takes many shapes and forms

• Rearranging Layout

• Restructuring Hierarchy

38

Refactoring takes many shapes and forms

• Rearranging Layout

• Restructuring Hierarchy

• Optimizing Implementation

39

Refactoring takes many shapes and forms

• Rearranging Layout

• Restructuring Hierarchy

• Optimizing Implementation

• Project-wide Renaming

…. and many more!

40

Refactor by consolidating redundant Stateflow chart

41

Driver and Passenger Controls are identical

Detecting clones with Clone Detector App

42

1. Create a test

2. Implement enough for test to pass

3. Refactor

Test Driven Development Cycle

43

Conclusion and key takeaways

44

Simulink provides an integrated

framework for TDD

Systematically verify requirements

Automate testing to deliver working

systems faster

Test Driven Development
powered by MATLAB and Simulink

45

• Model-Based Design – Simulink and Stateflow

• Manage Requirements – Simulink Requirements

• Author and Execute Tests – Simulink Test

• Measure Test Completeness – Simulink Coverage

• Refactor and Verify Compliance – Simulink Check

• Continuous Integration – MATLAB Plug in for Jenkins

• Organize, Manage and Share – Projects

Learn more

▪ Agile System Development with Model-Based Design

▪ Agile Model-Based Design: Accelerating Simulink Simulations in Continuous

Integration Workflows

▪ Verification, Validation, and Test Solution Page

▪ Continuous Integration Solution Page

46

https://www.mathworks.com/solutions/agile-development.html
https://www.mathworks.com/company/newsletters/articles/agile-model-based-design-accelerating-simulink-simulations-in-continuous-integration-workflows.html
https://www.mathworks.com/solutions/verification-validation.html
https://www.mathworks.com/solutions/continuous-integration.html

