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Building Algorithms in Everything… 
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Building Algorithms in Everything…

…but how do you deliver faster, meet 

changing customer requirements, 

and ensure quality?
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OF DONE
DELIVERY

1. Create a test

2. Implement enough for test to pass  

3. Refactor

Test Driven Development Cycle
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Requirements

Simulink provides an integrated framework for TDD

Test

Implementation
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Starting with high level customer requirements   
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User Requirements: 

• Both driver and passenger can control the window 

• Window stops closing if an object is detected 

• Window should have option to fully open and close



Capturing requirements
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Viewing details
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Requirement 

Details



Organizing and creating requirement hierarchies
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Requirement 

Hierarchies



Specifying details
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Description / Rationale Fields 

Links 

Pane



1. Create a test

2. Implement enough for test to pass  

3. Refactor
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Main Model

Test Harness

Component 

under test

▪ Isolate Component Under Test

Test 

Harnesses

▪ Author, manage, organize tests

Test

Manager

Test Browser

Test Results

Reports

▪ Specify test inputs, expected 

outputs, and tolerances

Test

Authoring 

Signal Editor

Temporal Assessments

Test Sequence

Time-Series Data

Develop, manage, and execute simulation-based tests
Simulink Test
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Creating a Test Harness to isolate Component Under Test 
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Specify properties of the Test Harness
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Specify inputs

16

Inputs

Test Sequence

MAT file (input)

Excel file (input)

Signal Editor



Outputs

Specify outputs 
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AssessmentsMAT file Excel



Created Test Harness to isolate Component Under Test
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Test Harness

Main Model



Authoring tests using Signal Editor 
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Use templates and wizards to automate test case creation
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Use templates and wizards to automate test case creation
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Create Simulation Test and link to requirement
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Link to requirements 

Specify model to test 



Test fails due to compilation error
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1. Create a test

2. Implement enough for test to pass  

3. Refactor
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Implement enough to get test to pass
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Linking implementation to requirements
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Managing artifacts with source control directly from Projects
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Scale and automate testing with Continuous Integration

▪ Schedule automatic code 

and model testing

▪ Access MATLAB Plugin for 

Jenkins
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Executing test with Test Manager

▪ Group into suites 

and test files

▪ Execute individual 

or batch 
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Analyzing and debugging results with Test Manager
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▪ View result summary

▪ Debug using Simulation 

Data Inspector

▪ Archive, export, and 

report results



Executing all tests until they pass
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Measuring testing completeness with coverage

▪ Identify testing gaps

▪ Missing requirements 

▪ Unintended functionality

▪ Design errors 
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Simulink

Stateflow

Code



Generating test reports for audits and reviews
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1. Create a test

2. Implement enough for test to pass  

3. Refactor
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Refactoring

▪ Refactoring is the process of changing software in such a way that it 

does not alter the external behavior of the code yet improves its internal 

structure   
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Refactoring takes many shapes and forms

• Rearranging Layout
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Refactoring takes many shapes and forms

• Rearranging Layout
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Refactoring takes many shapes and forms

• Rearranging Layout

• Restructuring Hierarchy
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Refactoring takes many shapes and forms

• Rearranging Layout

• Restructuring Hierarchy

• Optimizing Implementation
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Refactoring takes many shapes and forms

• Rearranging Layout

• Restructuring Hierarchy

• Optimizing Implementation

• Project-wide Renaming

…. and many more!
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Refactor by consolidating redundant Stateflow chart
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Driver and Passenger Controls are identical



Detecting clones with Clone Detector App 
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1. Create a test

2. Implement enough for test to pass  

3. Refactor

Test Driven Development Cycle
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Conclusion and key takeaways
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Simulink provides an integrated 

framework for TDD

Systematically verify requirements  

Automate testing to deliver working 

systems faster 



Test Driven Development 
powered by MATLAB and Simulink 
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• Model-Based Design – Simulink and Stateflow

• Manage Requirements – Simulink Requirements

• Author and Execute Tests – Simulink Test  

• Measure Test Completeness – Simulink Coverage 

• Refactor and Verify Compliance – Simulink Check 

• Continuous Integration – MATLAB Plug in for Jenkins

• Organize, Manage and Share – Projects



Learn more 

▪ Agile System Development with Model-Based Design

▪ Agile Model-Based Design: Accelerating Simulink Simulations in Continuous 

Integration Workflows

▪ Verification, Validation, and Test Solution Page

▪ Continuous Integration Solution Page
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https://www.mathworks.com/solutions/agile-development.html
https://www.mathworks.com/company/newsletters/articles/agile-model-based-design-accelerating-simulink-simulations-in-continuous-integration-workflows.html
https://www.mathworks.com/solutions/verification-validation.html
https://www.mathworks.com/solutions/continuous-integration.html

