MODEL EXCHANGE & VIRTUAL INTEGRATION WITH MATLAB/SIMULINK

MATLAB EXPO - MAY2022

Alessandro Mignogna, Sr.Pl MBD Methods & Tools - Collins Advanced Technologies Center – Italy
Giacomo Gentile, DPLC Accelerator Leader - Collins Advanced Technologies Center - Italy

Advanced Technologies Center – Italy
G.Stazi, L.Lazzara, A. Ulisse, A.Mignogna, V.Di Valerio, S.Sinisi

ABOUT COLLINS AEROSPACE

Collins Aerospace is a leader in technologically advanced, intelligent solutions that help redefine the aerospace and defense industry.

More than 78,000 people in more than 300 locations worldwide.

MECHANICAL SYSTEMS

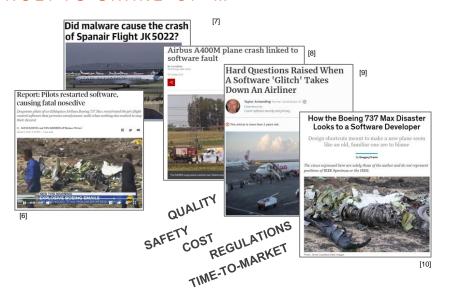
AVIONICS

MISSION SYSTEMS

INTERIORS

POWER & CONTROLS

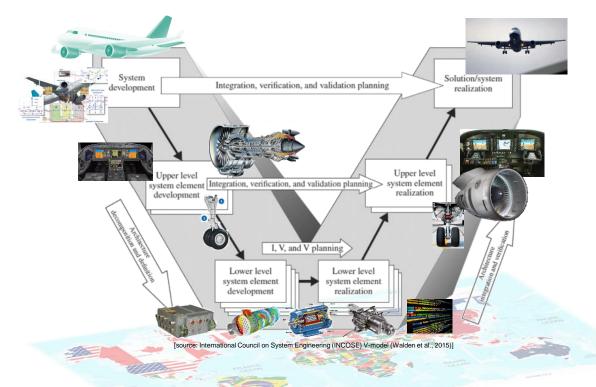
Raytheon


Applied Research & Technology

Accelerating Transformative Technology for a safer, more connected and sustainable world

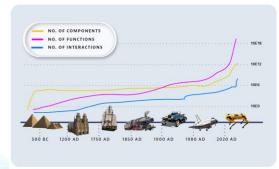
THE PERSPECTIVE OF AEROSPACE INDUSTRY

"ONCE-IN-A-CENTURY" AIR-VEHICLES CONCEPTS SHAKE-UP ...



... WHILE FACING ALL THE TRADITIONAL CHALLENGES!

DIGITAL ENGINEERING IS A MUST TO ENABLE DEVELOPMENT OF NEXT GENERATION AIRCRAFT SYSTEMS



COMPLEX SYSTEMS & COMPLEX INTEGRATION

System complexity growing together with business organizations complexity

- Multi-fidelity
- Multi-domain
- Multi-criticality
- Multi-team / multi-companies
- Geographical Distribution

Derived from Systems Engineering Vision 2035 Copyright © 2021 by INCOSE https://www.incose.org/about-systems-engineering/se-vision-2035

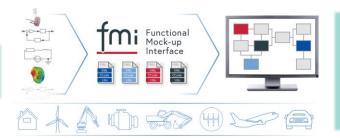
EARLY INTEGRATION TO ENABLE SMOOTH EVOLUTION OF SYSTEM DEVELOPMENT

DIGITAL ENGINEERING TO DEAL WITH INCREASING COMPLEXITY

Leading the Digital Transformation

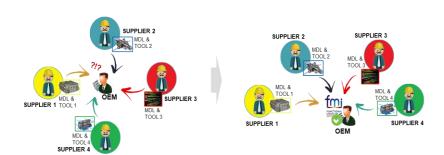
SHIFTS IN ACQUISITION TOWARDS COLLABORATIVE PROCESSES

ALIGNED WITH OEMs, DOD & ENGINEERING COMMUNITY STRATEGY & VISION



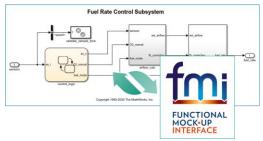
OEMS MBSE INITIATIVES

AIRBUS


FUNCTIONAL MOCK-UP INTERFACE STANDARD

MODELISAR Standard to exchange dynamic models and simulators (+10 years)

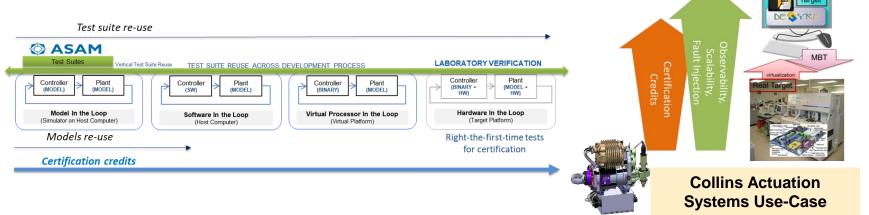
Defines an open interface & a standard XML-based model descriptor that models(FMU) shall comply with


FMI is suitable for continuous-time & discrete-time models exchange and integration

Contribute to an MBSE supply-chain for an agile and smooth integration of heterogeneous models (inter & intra companies)

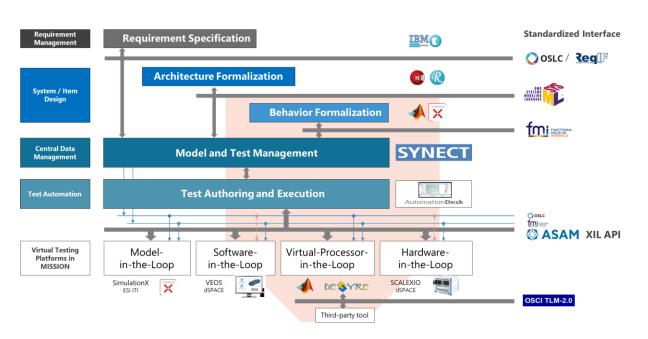
MathWorks provides full support for FMI standard:

- FMI Import to integrate 3rd parties FMUs in MATLAB/Simulink
- 2) FMI Export to generate an FMU out of a MATLAB/Simulink model leveraging Simulink Compiler


CLEAN-SKY2 EUROPEAN USE-CASES

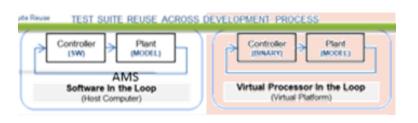
SIMULINK FMI IMPORT/EXPORT TO SUPPORT SYSTEM VALIDATION & VERIFICATION

Modelling and Simulation Tools for Systems Integration on Aircraft

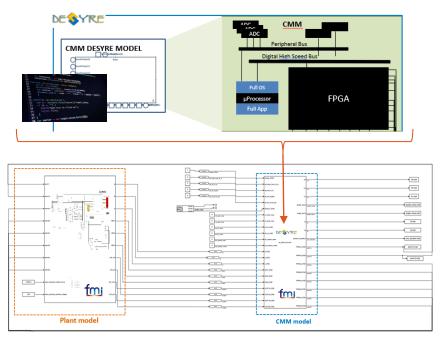

Methods & Tools to enhance Aerospace system development and integration reducing testing costs and paving the road to certification by simulation

CLEAN-SKY EUROPEAN USE-CASES

SIMULINK FMI IMPORT/EXPORT TO SUPPORT SYSTEM VALIDATION & VERIFICATION


- First-time-right tests for certification
- Eligibility of virtual tests for certification credits
- Dependability and quality assurance

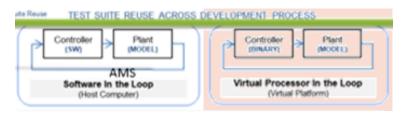
WORKFLOW FOR SEAMLESS AND STANDARD BASED TOOLS INTEGRATION



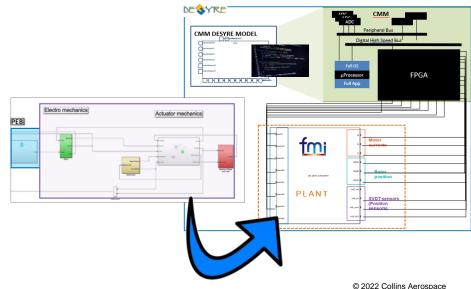
CLEAN-SKY EUROPEAN USE-CASES

SIMULINK FMI IMPORT/EXPORT TO SUPPORT SYSTEM CLOSED-LOOP V&V

	INTEGRATION & Tests	CMM-SW	CMM- HW	PEB	MOTOR & EMA
SiL	ControlDesk + Automation Desk	Host object code	N/A	Simulink model	
VPiL	Simulink	Target Object code	DESYRE model	Simulink model (refined w.r.t. SiL)	
HiL	ControlDesk + Automation Desk	Target Object code	Physical part		dSPACE model & Simulink model



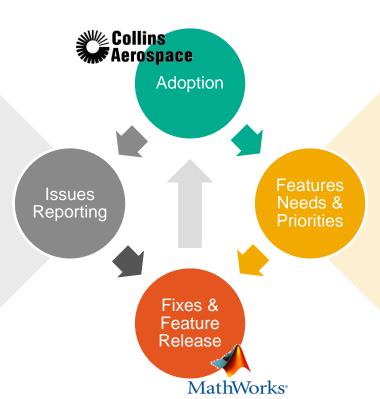
SIMULINK AS THE SYSTEM INTEGRATION ENVIRONMENT (CONTROLLER IMPORTED IN SIMULINK as AN FMU)


CLEAN-SKY EUROPEAN USE-CASES

SIMULINK FMI IMPORT/EXPORT TO SUPPORT SYSTEM CLOSED-LOOP V&V

	INTEGRATION & Tests	CMM-SW	CMM- HW	PEB	MOTOR & EMA
SiL	ControlDesk + Automation Desk	Host object code	N/A	Simulink model	
VPiL	Desyre + Automation Desk (via ASAM-XiL)	Target Object code	DESYRE model	FMU from Simulink model (refined w.r.t. SiL)	
HiL	ControlDesk + Automation Desk	Target Object code	Physical part		dSPACE model & Simulink model

COLLINS SIMULATOR AS INTEGRATION AN **ENVIRONMENT (SIMULINK PLANT EXPORTED AS FMU)**



FINDINGS & FORWARD LOOKING

CONTINUOUS ENGAGEMENT WITH MATHWORKS TEAM

- FMI Import/Export
- Ability to work with SLXP
- Simulink Design Optimization and Data Dictionaries limitations
- Improve documentation & speed

- FMI 3.0 features prioritization
- Simulink Test enhancements for parametric envelop exploration test cases
- Requirements
 Formalization and
 Automatic Test
 Generation

CONCLUSIONS

- Digital Engineering and standard-based Virtual Integration solutions is the answer that the aerospace community is pushing to cope with the increasing complexity of next generation aerospace systems
- Collins Aerospace industrial use-cases have been presented to demonstrate how the support for interoperability standards in MATLAB/Simulink (e.g. FMI import/export) permits to realize efficient virtual integration workflow
- The strong interaction with MathWorks teams permitted to efficiently report and fix issues, and discuss and introduce new capabilities in MATLAB/Simulink to best serve the industry needs

THANK YOU

