MODEL BASED DEVELOPMENT OF AC DRAWWORKS USING MATLAB

MathWorks Conference
 25 April 2019
 Houston, TX

COST EFFECTIVE WORKFLOW

Traditional

Model Based

TRADITIONAL APPROACH

SYSTEM MODELING

Uses of System Models

- Simulation, Visualization
- Static System Analysis, Formal Verification
- Virtual Fault Injection
- Synthesis of Implementations & Test Suites
- Documentation, Presentation

Step 1: Modeling a Plant

- Incorporating Mechanical and Electrical aspects of all the underlying components.
- Identifying Rig dynamics and states that affect the process operation.
- Assessing Inertia of each mechanical component in the assembly and adjusting for Potential Energy.
- Combining all of them with the help of MathWorks tools and creating a functional model.

Integrated Drive Systems

ions for the Drilling & Marine Industries

 \rightarrow

Step 2: Analyzing and synthesizing a controller for the Plant

- Mathematical Model thus conceived is used to identify dynamic characteristics of the Plant model.
- Objective is to incorporate all the I/O and control the equipment in an optimum manner without delay or overshoot and ensuring control stability.
- Requisite corrective behavior is achieved.
- System ID and Control Systems Toolboxes are utilized to fine tune nuances.

ntegrated Drive Systems

for the Drilling & Marine Industries

Step 3: Simulating the Plant and Controller

- Time response of the dynamic system to complex, time-varying inputs is investigated.
- Simulation allows specifications, requirements and modeling errors to be found immediately, rather than later in the design effort.
- Controller can be optimized with the virtual Plant model and can be made compatible to be converted into Machine Code for release on a industrial processor.

ntegrated Drive Systems

Step 4: Integrating all phases and Deploying the Controller

- Ideally done via automatic code generation from the controller developed in Step 2.
- Controller performance is not perfect in real world condition.
- An iterative debugging process is carried out by analyzing results on the actual target and updating controller model further.
- All of the above can be done in a Graphical Interface.

10 LINE DRAWWORKS MODEL

Result of Simulation: Block Performance and Motor Performance

IDEAL CURVE

Block Speed

ORIGINAL

SPEED IMPROVEMENTS

Ideal Kinetic Energy Zone Management

ibs

32 feet stopping distance – Before [Dynamic calculations depending on the layers]

Block Speed

Integrated Drive Systems

12 feet stopping distance – After [Dynamic calculations depending on the layers]

TARGET – After Optimization

ibs-

SUMMARY

- Optimize system performance
 Developed in a single environment
 - No cosimulation
- Find problems before building hardware using HIL
- Discover integration problems using simulation
 - No cosimulation
- Create accurate, reusable plant models quickly and easily.
- Robust Control.

