
by Dick Benson, The MathWorks
and Narinder Lall, Xilinx

S ignal processing has traditionally
been the realm of DSP processors
(for low sample rate applications)

and ASICs (for high sample rates).
Recently the FPGA has emerged as an
alternative option for DSP designers. The
FPGA is organized as an array of logic ele-
ments and programmable routing resources
used to provide the connectivity between
the logic elements, I/O pins and other
resources such as on-chip memory, digital
clock managers, embedded hardware mul-
tipliers, embedded microprocessors and
multi-gigabit transceivers. A large number
of transistors are used to support the pro-
grammable routing resources.

As a result, an FPGA is a highly config-
urable device that can be used to construct
customized, and yet reconfigurable, data
paths to solve the problem at hand.
Additionally, the significant combined
computational power of dedicated DSP
resources such as 500+ multipliers, accu-
mulators, distributed and block memory,
and shift-register logic allows the imple-
mentation of highly parallel structures that
support computational throughput rates
approaching that of today’s ASICs.

The FPGA approach to signal pro-
cessing provides a high-performance,
highly flexible, miniature silicon foundry at
your disposal, with a turn-around time of

hours instead of the months or even years
required for many complex ASICs.

Software Defined Radios
A software defined radio is a radio

made from reconfigurable/programmable
general-purpose components. It is the pro-
gramming of these components that define
its operational characteristics. For instance,
bandwidth and modulation (ssb, cw, am,
fsk, psk, qpsk, etc.) are completely deter-
mined by how the reconfigurable parts are
programmed, not by hardware such as fil-
ters, mixers, amplifiers or other “tradi-
tional” components. Figure 1 illustrates the
architectural simplicity of this radio.

Although millions of transistors are
required, modern semiconductor manufac-
turing techniques make the cost per tran-
sistor less than that of a one turn wire loop
serving as an inductor. The radio uses mul-
tiple sampling rates for signal processing.
The high-speed work is done in the FPGA
while the audio bandwidth work is done in
the DSP—a rather perfect division of labor,
with each signal processing component
doing what makes the most sense.

Prior to 1956 there were two primary
methods for generating single sideband
(SSB) signals: phasing and filtering. Each
had pros and cons. The phasing method
required a circuit that generated a 90-degree

phase shift across the audio frequency range
(300-3000 Hz). Deviations from 90 degrees
resulted in less suppression in the unwanted
sideband signal. The filtering method, using
crystal and mechanical filters, eventually
won out. In 1956, Donald Weaver developed
a third method that used filters and phase
shifts, although the filters were low-pass, not
band-pass, and the phase shifts were fixed
with respect to frequency. However, the
technology was not quite up to the task, and
the filtering approach worked well, so the
new “Third Method” was not adopted.

The main problems of DC offset and
filter gain-phase match, which prevented the
idea from being adopted in 1956, simply do
not exist in today’s DSP implementation.
Applying Weaver’s technique in DSP hard-
ware is quite easy.

Figure 2 shows a block diagram of a
simple SSB generator using Weaver’s
scheme. To provide a recognizable shape to
the spectrum, a weighted sum of sine waves
is used as the audio input. The first transla-
tion and filtering operation centers the
desired sideband around DC and removes
the other sideband. Then it is a simple matter
to up-convert this complex (I & Q) signal to
the desired RF frequency. The output of the
final two mixers is either summed or differ-
enced to get the upper or lower sideband.
The spectra shown in Figure 2 tell the story.

DSPs have traditionally tackled signal processing applications. But the
complement of FPGA-based processing can add levels of performance
only possible with custom ASICs, along with configurability and cost
savings that far surpass what ASICs can offer.

System-Level Design Using
FPGAs and DSPs
An Example Showing Software-Defined Radio

Reprinted from January 2004

Killer Technologies

Wireless Connectivity ❙ PCI Express ❙ ATCA ❙ Configurable Computing ❙ Real-Time Java

The previous simplified example shifted
the upper sideband to approximately 25 kHz.
The actual radio will need to go far higher, to
almost 30 MHz. To accomplish this, multi-
stage, multirate filtering is required. The
MathWorks filter design tools can simplify
this design job.

Naturally, to cover the 30 MHz HF spec-
trum, a sampling clock of greater than 2x30
MHz is needed. The SignalMaster onboard
64 MHz clock satisfies this requirement. For
voice communications, the desired audio
sampling rate is around 8000 Hz, and a dec-
imation factor of 64e6/8192 = 7812.5 Hz is a
good fit. Focusing on the receiver for a
moment, the first stage of filtering will be a
cascaded integrator-comb (CIC) filter since
it maps very well to Virtex-II FPGA hard-
ware. The remaining receiver filters will be
FIR decimators or interpolators for the
transmit chain. The filter processing is as fol-
lows: CIC (D=64), FIR_1 (D=8), FIR_2
(D=8), FIR_3 (D=2) for an overall sample
rate reduction of 64*8*8*2=8192. The last
filter (D=2) determines the ultimate audio
frequency response characteristics. It is
trivial to change the filter characteristics
since they are all defined by software.

Once the basics have been laid out, more
detail can be added. The first step in this
process is to create a hardware-independent
model. This is can be accomplished using the
Simulink DSP Blockset. Figure 3 shows the
general signal flow in the radio. The local
oscillators are shared by both receive and
transmit processing chains. The receiver con-
sists of a digital downconverter followed by a
final filter-demodulator stage. The transmitter
is simply the receiver blocks turned around
with interpolating rather than decimating fil-
ters. Once satisfactory simulation results have
been obtained, indicating the general signal
flow and filtering are correct, it is time to split
the model between the FPGA and the DSP.
For this design, partitioning the functions is
straightforward.

Because the light green blocks in Figure 2
contain data rates that are all at or below
15.625K Samples/s, these sub-systems will be
implemented in the DSP chip. The light red
blocks have the higher rate data running from
64M Samples/s down to the 15.625K
Samples/s rate and will therefore be imple-
mented in the Xilinx FPGA. By the way, this
is still the Weaver scheme, but we will
describe it in modern terminology as digital

Reprinted from January 2004

The entire radio architecture can be captured in 12 functional
blocks. The black signal paths indicate continuous time sig-
nals, while the colored paths (red, green, blue) are discrete
time with red indicating the highest sampling rate of 64M
Samples/s. The FPGA is used for frequency translation, while
the DSP takes care of modulation, demodulation, compres-
sion, AGC and other lower data rate functions.

Figure 1

There are several methods that may be used to generate a
single sideband signal. The method first proposed in 1956 by
Donald Weaver works nicely with today’s digital signal pro-
cessing technology. The above model shows the spectra
involved with the evolution of a single sideband signal: audio
input (left), translation and removal of one sideband (center),
and frequency translation and conversion to a real signal con-
taining the desired sideband (right).

Figure 2

Configurable Computing

Killer Technologies

down / upconverters with SSB modulators and
demodulators.

FPGA Implementation
The Xilinx System Generator for DSP is an

extension of Simulink that provides design
entry, data path definition, bit- and cycle-true
simulations, test bench generation, hardware
co-simulation and VHDL code generation.
The tool’s block library maps to Xilinx DSP
LogiCores, which are optimized implementa-
tions of typical DSP functions such as filters,
direct digital synthesizer and FFT. Engineers
pick blocks from the library, define the fixed
point parameters (word size, binary point posi-
tion, rounding, saturation), and hook them
together like standard Simulink blocks.
Gateways are used to convert between the
standard Simulink and the Xilinx-specific data
types used by the Xilinx blocks.

As Figure 4 indicates, there are also blocks
for Lyr SignalMaster hardware, marked here as
“LSP.” The ADC (red) represents the 64M
Samples/s converter, while the DAC (red) is
the 64M Samples/s DAC. The gate_1 gateway
block is a 32-bit register that the DSP can write
to change the frequency of the direct digital
synthesizer in the RF Local Oscillator block.
The down-converted IQ stream from the
Rx_Mix_Filters is fed to a 32-bit gateway that
interfaces to the TI DSP. On the transmit side,
another gateway (IQ from DSP) takes data
from the TI DSP and drives the IQ input of the
TX_Filters_Mix block. This diagram shows
the top level; further detail is contained within
each block.

Once the data paths and processing are
defined, simulation reveals whether the design
meets the objectives of dynamic range, and
whether spurious responses introduced by the
fixed-point implementation have been rejected.
If not, chances are that more bits must be used
in the filter coefficients and/or data paths. Once
the performance objectives are met, you can
generate the approximately 200 files of VHDL
required to implement the design.

It is then a matter of using the normal
Xilinx tool flow of synthesis, place and rout,
and bit-stream generation to program the
FPGA. This process requires virtually no user
intervention and bit-stream generation can be
accomplished with a single mouse click.

One of the more interesting reports that can
be generated is a “floor plan” of the FPGA
design. The digital frequency translator con-
sumed virtually all (95%) of the FPGA. The

Reprinted from January 2004

Detail is added to the design to create the transmitter and
receiver processing, which shares a common set of local oscilla-
tors. This top-level model captures the five main subsystems
needed to create the radio. Each block contains several levels
of hierarchy, getting down to fixed-point implementation details
where required. The light red blocks handle the 64 M Samples/s
data rates and will therefore be implemented in the FPGA. The
green blocks handle data at both 15.625 and 7.8125K
Samples/s, and will be implemented in the DSP chip.

Figure 3

The FPGA signal processing portion of the design is simulated to
bit- and cycle-true accuracy by using the Xilinx System Generator
for DSP in The MathWorks Simulink environment. Data path size,
filter coefficient quantization, and all fixed-point attributes are
defined using parameterized blocks. The LSP blocks represent
gateways to and from the DSP chip (cyan) while the red block rep-
resents the high-speed ADC and DAC hardware on the Lyr
SignalMaster development hardware.

Figure 4

Configurable Computing

Killer Technologies

design did not initially fit in the xc2v1000
part that was on the SignalMaster. Bits
were trimmed and both rounding and satu-
ration were abandoned in the transmit data
paths. The simulation results indicated that
this would not cause any severe problems if
the proper audio signal conditioning were
handled in the DSP chip portion of the
design. The ability to easily make these
tradeoffs is a key attribute of the design
flow and the rationale for using a program-
mable logic device. In this case, the design
fits on the available device, but if we
wanted to add more functionality or space
efficiency to the system, we could use this
analysis to shrink the design further.

DSP Processor
Implementation

Figure 5 shows the top level of the
radio partition, which is implemented with
the TI C6711 DSP chip on the Lyr
SignalMaster development hardware.
Like the preceding models, this model is
hierarchical, and contains details of audio

processing algorithms to be implemented
on the DSP.

The Audio Processing block contains
the low-frequency ADC for the micro-
phone input, a reverberation subsystem, an
audio compressor and the ability to gen-
erate a two-tone signal for test purposes.
The resulting audio data stream is fed to the
transmitter (Tx) SSB Modulator subsystem
that contains the audio frequency quadra-
ture local oscillator, interpolating filter
(I=2), and mixers to generate the transmit
IQ data stream. This data stream is then fed
to the SMC6xx Interface block as a 32-bit
word (16 for I, 16 for Q), which drives the
input of the FPGA digital upconverter.

On the receive side, the output of the
SMC6xx Interface block is fed to an IQ
demux that splits the 32-bit word into two
16-bit words for I and Q. This complex
signal then goes though the D=2 deci-
mating stage. The filter output drives an
AGC stage that is similar in nature to the
audio compression stage. The amplitude-
stabilized result of the AGC stage is then

fed to the multipliers, which mix the IQ
data with the audio quadrature oscillator.
The result of this is then fed to an adder.
This implements the SSB demodulator.

To control tuning frequency,
transmit/receive and sideband selection, a
simple user interface was made from
switches and sliders. The light bulb icon
activates LEDs on the SignalMaster during
transmit. A wire from the LED driver is the
electrical transmit/receive signal for the
external (analog) hardware.

The real-time code to implement the
example in Figure 5 can be generated auto-
matically from the Simulink environment
using the Real-Time Workshop product.
The process that generates the C code can be
modified to support a variety of target hard-
ware. A pre-packaged target exists for the
Lyr SignalMaster, making it remarkably
easy to get up and running. Not a single line
of C or VHDL code was manually written.

The block diagram now becomes the
user interface to control the radio. The
switches and sliders on the block diagram
change parameters (T/R, frequency,
USB/LSB) on-the-fly while the code is
executing in the hardware. Beyond this,
parameters can also be changed while the
code is running to adjust settings such as
reverb level, AGC time constant and signal
limiting. Scopes and digital readouts can be
used to monitor the signal levels in the
system under operating conditions. The
system block diagram becomes a graphical
tuning, debugging environment as well.

Reprinted from January 2004

The top-level view of the partition executing in the DSP chip is
shown above. The C code to implement the design is automatically
generated by The MathWorks Real-Time Workshop option to the
Simulink environment. Both the FPGA bitstream and DSP chip
binary image are downloaded to the Lyr SignalMaster with a single
mouse click. The block diagram then turns into a graphical debug-
ging tool where scopes, meters and numerical displays can show
the signals while the target DSP is executing the real-time code.
Sliders, switches and other parameters can be changed on-the-fly to
control the hardware. This design controls upper/lower sideband
selection, transmit/receive, tuning frequency (fine and coarse),
audio levels and more.

Figure 5

Configurable Computing

Killer Technologies

www.mathworks.com
info@mathworks.com

508.647.7000

91192V00

