Main Content

CWE Rule 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Since R2023a

Description

Rule Description

The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow.

Polyspace Implementation

The rule checker checks for these issues:

  • Destination buffer overflow in string manipulation

  • Invalid use of standard library memory routine

  • Invalid use of standard library string routine

  • Tainted NULL or non-null-terminated string

Examples

expand all

Issue

This issue occurs when certain string manipulation functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written. For instance:

  • If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s instead to enforce length control. Alternatively, use asprintf to automatically allocate the memory required for the destination buffer.

  • If you use vsprintf to write formatted data from a variable argument list to a string, use vsnprintf or vsprintf_s instead to enforce length control.

  • If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce length control.

Another possible solution is to increase the buffer size.

Example — Buffer Overflow in sprintf Use
#include <stdio.h>

void func(void) {
    char buffer[20];
    char *fmt_string = "This is a very long string, it does not fit in the buffer";

    sprintf(buffer, fmt_string);  //Noncompliant
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
    char buffer[20];
    char *fmt_string = "This is a very long string, it does not fit in the buffer";

    snprintf(buffer, 20, fmt_string);
}
Issue

This issue occurs when a memory library function is called with invalid arguments. For instance, the memcpy function copies to an array that cannot accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix on any event in the sequence. If the result details do not show this event history, you can search for previous references of variables relevant to the defect using right-click options in the source code and find related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Example — Invalid Use of Standard Library Memory Routine Error
#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
  char str1[10],str2[5];

  printf("Enter string:\n");
  scanf("%s",str1);

  memcpy(str2,str1,6);  //Noncompliant
  /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

  return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
  /* Fix: Declare str2 with size 6 */
  char str1[10],str2[6]; 

  printf("Enter string:\n");
  scanf("%s",str1);

  memcpy(str2,str1,6);
  return str2;
 }
Issue

This issue occurs when a string library function is called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source)
tries to copy too many bytes into the destination argument compared to the available buffer, constrain the source argument before the call to strcpy. In some cases, you can use an alternative function to avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes copied.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Example — Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>
 
 char* Copy_String(void)
 {
  char *res;
  char gbuffer[5],text[20]="ABCDEFGHIJKL";

  res=strcpy(gbuffer,text); //Noncompliant 
  /* Error: Size of text is less than gbuffer */

  return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than the source string text.

#include <string.h>
 #include <stdio.h>
 
 char* Copy_String(void)
 {
  char *res;
  /*Fix: gbuffer has equal or larger size than text */
  char gbuffer[20],text[20]="ABCDEFGHIJKL";

  res=strcpy(gbuffer,text);

  return(res);
 }
Issue

This issue occurs when strings from unsecure sources are used in string manipulation routines that implicitly dereference the string buffer, for instance, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned from a call to scanf-family variadic functions. Similarly, no defect is raised when you pass the string with a %s specifier to printf-family variadic functions.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash. If the string is not null-terminated, the string routine might not know when the string ends. This error can cause you to write out of bounds, causing a buffer overflow.

Fix

Validate the string before you use it. Check that:

  • The string is not NULL.

  • The string is null-terminated

  • The size of the string matches the expected size.

Extend Checker

By default, Polyspace® assumes that data from external sources are tainted. See Sources of Tainting in a Polyspace Analysis. To consider any data that does not originate in the current scope of Polyspace analysis as tainted, use the command line option -consider-analysis-perimeter-as-trust-boundary.

Example — Getting String from Input
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
	char userstr[MAX];
	read(0,userstr,MAX);
	char str[SIZE128] = "Warning: ";
	strncat(str, userstr, SIZE128-(strlen(str)+1));//Noncompliant
	print_str(str);
}


In this example, the string str is concatenated with the argument userstr. The value of userstr is unknown. If the size of userstr is greater than the space available, the concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-terminated before using it in strncat. This example uses a helper function, sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
	int res = 0; 
	if (s && (strlen(s) > 0)) { // Noncompliant-TAINTED_STRING only flagged here
		// - string is not null
		// - string has a positive and limited size
		// - TAINTED_STRING on strlen used as a firewall
		res = 1;
	}
	return res; 
}
void warningMsg(void)
{
	char userstr[MAX];
	read(0,userstr,MAX);
	char str[SIZE128] = "Warning: ";
	if (sanitize_str(userstr))	
		strncat(str, userstr, SIZE128-(strlen(str)+1));
	print_str(str);
}
Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
    char str[SIZE128] = "Warning: ";
    strncat(str, userstr, SIZE128-(strlen(str)+1));
    print_str(str);
}

void errorMsg(char* userstr)
{
  char str[SIZE128] = "Error: ";
  strncat(str, userstr, SIZE128-(strlen(str)+1));
  print_str(str);
}

int manageSensorValue(int sensorValue) {
  int ret = sensorValue;
  if ( sensorValue < 0 ) {
    errorMsg("sensor value should be positive");
    exit(1);
  } else if ( sensorValue > 50 ) {
    warningMsg("sensor value greater than 50 (applying threshold)...");
    sensorValue = 50;
  }
  
  return sensorValue;
}

Check Information

Category: Memory Buffer Errors

Version History

Introduced in R2023a