sbionlinfit
Perform nonlinear least-squares regression using SimBiology models (requires Statistics and Machine Learning Toolbox software)
sbionlinfit will be removed in a future release. Use sbiofit instead.
Syntax
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates)
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, Name,Value)
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, optionStruct)
[results, SimDataI]
= sbionlinfit(...)
Description
performs least-squares regression using the SimBiology® model, results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates)modelObj, and returns estimated results
in the results structure.
performs least-squares regression, with additional options specified by one or more
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, Name,Value)Name,Value pair arguments.
Following is an alternative to the previous syntax:
specifies results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, optionStruct)optionStruct, a structure containing fields and
values used by the options input structure to the nlinfit (Statistics and Machine Learning Toolbox) function.
[
returns simulations of the SimBiology model, results, SimDataI]
= sbionlinfit(...), using the
estimated values of the parameters.modelObj
Input Arguments
| SimBiology model object used to fit observed data. |
|
Note If using a |
|
Note For each subset of data belonging to a single group (as defined in the
data column specified by the
|
| Vector of initial parameter estimates for each parameter estimated in
|
| Structure containing fields and values used by the
If you have Parallel Computing Toolbox™, you can enable parallel computing for faster data fitting by
setting the name-value pair argument parpool; % Open a parpool for parallel computing opt = statset(...,'UseParallel',true); % Enable parallel computing results = sbionlinfit(...,opt); % Perform data fitting |
Name-Value Arguments
Output Arguments
| 1-by-N array of objects, where N is
the number of groups in
|
|
|
Version History
Introduced in R2009a
See Also
PKData object | PKModelDesign object | PKModelMap object | Model object | sbionlmefit | nlinfit (Statistics and Machine Learning Toolbox) | sbionlmefitsa