Main Content

jacobiDC

Jacobi DC elliptic function

Description

example

jacobiDC(u,m) returns the Jacobi DC Elliptic Function of u and m. If u or m is an array, then jacobiDC acts element-wise.

Examples

collapse all

jacobiDC(2,1)
ans =
     1

Call jacobiDC on array inputs. jacobiDC acts element-wise when u or m is an array.

jacobiDC([2 1 -3],[1 2 3])
ans =
    1.0000    0.4197   -0.0056

Convert numeric input to symbolic form using sym, and find the Jacobi DC elliptic function. For symbolic input where u = 0 or m = 0 or 1,jacobiDC returns exact symbolic output.

jacobiDC(sym(2),sym(1))
ans =
1

Show that for other values of u or m, jacobiDC returns an unevaluated function call.

jacobiDC(sym(2),sym(3))
ans =
jacobiDC(2, 3)

For symbolic variables or expressions, jacobiDC returns the unevaluated function call.

syms x y
f = jacobiDC(x,y)
f =
jacobiDC(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiDC(3, 5)
fVal = double(f)
fVal =
    0.9981

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
0.99805623285568333815968501058428

Plot the Jacobi DC elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiDC(u,m);
fcontour(f,'Fill','on')
title('Jacobi DC Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes. The axes with title Jacobi DC Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi DC Elliptic Function

The Jacobi DC elliptic function is

dc(u,m) = dn(u,m)/cn(u,m)

where dn and cn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b