Main Content

jacobiND

Jacobi ND elliptic function

Description

example

jacobiND(u,m) returns the Jacobi ND Elliptic Function of u and m. If u or m is an array, then jacobiND acts element-wise.

Examples

collapse all

jacobiND(2,1)
ans =
    3.7622

Call jacobiND on array inputs. jacobiND acts element-wise when u or m is an array.

jacobiND([2 1 -3],[1 2 3])
ans =
    3.7622    3.2181 -218.7739

Convert numeric input to symbolic form using sym, and find the Jacobi ND elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiND returns exact symbolic output.

jacobiND(sym(2),sym(1))
ans =
cosh(2)

Show that for other values of u or m, jacobiND returns an unevaluated function call.

jacobiND(sym(2),sym(3))
ans =
jacobiND(2, 3)

For symbolic variables or expressions, jacobiND returns the unevaluated function call.

syms x y
f = jacobiND(x,y)
f =
jacobiND(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiND(3, 5)
fVal = double(f)
fVal =
    1.0024

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
1.0024338497055006289470589737758

Plot the Jacobi ND elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiND(u,m);
fcontour(f,'Fill','on')
title('Jacobi ND Elliptic Function')
xlabel('u')
ylabel('m')

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi ND Elliptic Function

The Jacobi ND elliptic function is

nd(u,m) = 1/dn(u,m)

where dn is the respective Jacobi elliptic function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b