Puzzler: Quickly tell if two absolute indices (a,b) are four connected for n x m matrix.

1 vue (au cours des 30 derniers jours)
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
% Your code here
Note, this code should use no toolboxes, and should be reasonably quick as this function will be called many times. Reasonably quick is up to debate as the rest of the code forms.
  10 commentaires
Fangjun Jiang
Fangjun Jiang le 2 Sep 2011
@andrei, your code above returns false for both (1,4,4,5) and (1,17,4,5)
Walter Roberson
Walter Roberson le 2 Sep 2011
Did anyone run timing tests on the survivors?

Connectez-vous pour commenter.

Réponse acceptée

David Young
David Young le 1 Sep 2011
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
d = abs(a-b);
flag = d == n || (d == 1 && mod(min(a,b), n));
end
  3 commentaires

Connectez-vous pour commenter.

Plus de réponses (5)

Fangjun Jiang
Fangjun Jiang le 1 Sep 2011
Circle-shifting neighbors are considered connected.
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
% Your code here
[x,y]=ind2sub([n,m],[a;b]);
xdiff=abs(x(1)-x(2));
ydiff=abs(y(1)-y(2));
flag = ((xdiff==0) && (ydiff==1) || (ydiff==m-1)) || ...
((ydiff==0) && (xdiff==1) || (xdiff==n-1));
A little test script. All other entries so far didn't pass this test.
clc;
TestVector={6,7,4,5
6,10,4,5
1,4,4,5
1,17,4,5};
for k=1:size(TestVector,1)
if isFourConnected(TestVector{k,:})~=true
disp(k);beep;
end
end
  1 commentaire
Doug Hull
Doug Hull le 1 Sep 2011
clever, I like it! First in also! Thanks (will accept after a few hours to let more people at it!)

Connectez-vous pour commenter.


Walter Roberson
Walter Roberson le 1 Sep 2011
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
flag = abs(a-b)==n || (floor(a/n)==floor(b/n) && abs(a-b)==1);
  3 commentaires
Walter Roberson
Walter Roberson le 1 Sep 2011
flag = abs(a-b)==n || (abs(a-b)==1 && floor(a/n)==floor(b/n));

Connectez-vous pour commenter.


Oleg Komarov
Oleg Komarov le 1 Sep 2011
I assume a,b,m,n always numeric and integer values > 1
function flag = isFourConnected(a,b,n,m)
% a,b : indices of interest a ~= b
% m,n : size of matrix of interest
% flag: True if indices a and b are four connected
% in a matrix of size n x m
d = a-b; flag = d == n || d == -n || (d == 1 && mod(a,n) ~= 1) || (d == -1 && mod(b,n) ~= 1);
  4 commentaires
Oleg Komarov
Oleg Komarov le 1 Sep 2011
Can't find any other valid solution to ensure bottom vs top not 4 conn except the ones already proposed.
Walter Roberson
Walter Roberson le 1 Sep 2011
Tossing something together: diff(mod(sort([a,b]),n))<0

Connectez-vous pour commenter.


Bruno Luong
Bruno Luong le 1 Sep 2011
function flag = isFourConnected(a,b,n,m)
% 10 arithmetic operations by pair
c = max(a,b);
d = min(a,b);
e = c - d;
flag = (e==1 & mod(d,n)) | (e==n & c>n);
  2 commentaires
Walter Roberson
Walter Roberson le 1 Sep 2011
This might or might not be slightly faster:
c = sort([a,b]);
e = c(2)-c(1);
flag = (e==1 & mod(c(1),n)) | (e==m & c(2)>n);
Or if you prefer your original structure, then instead of max/min, you could use
c = max(a,b);
d = a + b - c;
Bruno Luong
Bruno Luong le 1 Sep 2011
I believe I had one redundant test in the earlier code:
function flag = isFourConnected(a,b,n,m)
% 8 arithmetic operations by pair
c = max(a,b);
d = min(a,b);
e = c - d;
flag = (e==1 & mod(d,n)) | (e==n);

Connectez-vous pour commenter.


Daniel Shub
Daniel Shub le 2 Sep 2011
I am not sure what to do about circle-shifting neighbors so I have two answers.
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
% Your code here
% Using ind2sub might be faster.
col = mod([a(:), b(:)]-1, n)+1;
row = ceil([a(:), b(:)]/n);
%[col, row] = ind2sub([n, m], [a(:), b(:)]);
flag = reshape(mod(abs(diff(col, 1, 2)), n-2)+mod(abs(diff(row, 1, 2)), m-2) == 1, size(a));
% if circle shifted points are not connected:
% flag = reshape(abs(diff(col, 1, 2))+abs(diff(row, 1, 2)) == 1, size(a));

Catégories

En savoir plus sur Environment and Clutter dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by