Deconvolution of a polynomial and exponential function
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I got the same problem with following link:
I got trouble using Bayesian deconvolution
here I already got wt(z) and a'(z) with same one dimension size array
I have no idea how to got iterative.
If need my data, I will give my data. thanks a lot ><
4 commentaires
高飞 支
le 17 Déc 2023
Déplacé(e) : John D'Errico
le 17 Déc 2023
I have the same trouble have you solved it?can you give me some advices?
Rui
le 6 Août 2024
hello, larry liu
i am doing the same work as you did, did u use the Bayes iteration that you showed in the picture? cuz i try to deal with time constant in this way. It doesn't work..
Réponses (1)
Yash
le 24 Nov 2023
Modifié(e) : Yash
le 24 Nov 2023
Hi Larry,
I understand that you are facing issues while using the "deconv" function in MATLAB. "deconv(y,h)" deconvolves a vector "h" out of a vector "y" using polynomial long division, and returns the quotient "x" and remainder "r" such that "y = conv(x,h) + r".
Given that you already have a deconvolution function in your case, you may not need to use the "deconv" function. Instead, you can make an initial guess for "R(z)" and then obtain the approximation iteratively using a loop as follows:
n = length(df2);
w = Wzinstead';
a = df2';
R = randi(1000,n,1)/1000; % Initial guess, random values
nIter = 10;
for i=1:1:nIter
R1=R*(corr(w, a./(conv(w,R,'same'))));
R=R1;
end
Hope this helps you address the issue.
1 commentaire
yicong
le 6 Sep 2024
% Define initial parameters
R1 = 6.3;
R2 = 6.3;
R3 = 6.3;
tau1 = 1e-5;
tau2 = 1e-2;
tau3 = 1e1;
% Define the time range
t_min = 1e-6;
t_max = 1e2;
% Calculate the number of interpolation points
num_points_per_decade = 20;
num_decades = log10(t_max) - log10(t_min);
num_points = round(num_points_per_decade * num_decades);
% Generate logarithmically spaced time points
t_interp = logspace(log10(t_min), log10(t_max), num_points);
z_interp = log(t_interp);
% Calculate the analytical model a(t)
a_t = R1 * (1 - exp(-exp(log(t_interp))/tau1)) + ...
R2 * (1 - exp(-exp(log(t_interp))/tau2)) + ...
R3 * (1 - exp(-exp(log(t_interp))/tau3));
% Use gradient to compute da/dz
da_dz = gradient(a_t, z_interp);
% Define W(z) = exp(z - exp(z))
W_z = exp(z_interp - exp(z_interp));
% Uncomment to normalize each column of W_z
% for l = 1:num_points
% W_z(:, l) = W_z(:, l) / sum(W_z(:, l)); % Normalize each column
% end
max_iterations = 100; % Maximum number of iterations
tolerance = 1e-6; % Convergence threshold
% Initialize Psi(z) with da/dz
Psi_z = da_dz';
w=W_z';
a=da_dz';
% Iterative correction
for iter = 1:1:max_iterations
R1=Psi_z*(corr(w, a./(conv(w,Psi_z,'same'))));
Psi_z=R1;
end
% Plot the results
figure;
subplot(3,1,1);
plot(z_interp, da_dz);
title('da/dz vs z');
xlabel('z');
ylabel('da/dz');
subplot(3,1,2);
plot(z_interp, W_z);
title('W(z)');
xlabel('z');
ylabel('W(z)');
subplot(3,1,3);
plot(z_interp, Psi_z);
title('\Psi(z) after Van Cittert Deconvolution');
xlabel('z');
ylabel('\Psi(z)');
-----------
I apply your code here while get wrong time constant result.
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!