After this I want to integrate P1 from 0 to x (let's say this function to be P2) and then again integrating the function P2 from 0 to 1. I don't know how to proceed.

4 vues (au cours des 30 derniers jours)
% For plane slider: H = Ho + a(1-x)
Ho = 1;
alpha = 0.1;
eps = 0.1;
a = 1.0;
lbar = 0.1;
sigma = 0.05;
H = @(x) Ho + a*(1 - x);
G1 = @(x) H(x).^3 + 3 .* H(x).^2 .* alpha + 3*sigma^2*alpha + alpha^3 - 12*lbar^3*(H(x) + alpha);
G2 = @(x) 24 * lbar^3 .* tanh(H(x)./(2*lbar));
G3 = @(x) (12*lbar^2*alpha - eps - alpha^3 - 3*sigma^2*alpha) .* (1 - (tanh(H(x)./(2*lbar))).^2);
G = @(x) G1(x) + G2(x) + G3(x);
Hm1 = @(x) H(x).* (1 ./ G(x));
Hm2 = @(x) (1 ./ G(x));
IntHm1 = integral(Hm1,0,1);
IntHm2 = integral(Hm2,0,1);
Hm = IntHm1 / IntHm2
P1 = @(x) 6 .* (1 ./ G(x)) .* (H(x) - Hm);

Réponse acceptée

Torsten
Torsten le 6 Juin 2022
% For plane slider: H = Ho + a(1-x)
Ho = 1;
alpha = 0.1;
eps = 0.1;
a = 1.0;
lbar = 0.1;
sigma = 0.05;
H = @(x) Ho + a*(1 - x);
G1 = @(x) H(x).^3 + 3 .* H(x).^2 .* alpha + 3*sigma^2*alpha + alpha^3 - 12*lbar^3*(H(x) + alpha);
G2 = @(x) 24 * lbar^3 .* tanh(H(x)./(2*lbar));
G3 = @(x) (12*lbar^2*alpha - eps - alpha^3 - 3*sigma^2*alpha) .* (1 - (tanh(H(x)./(2*lbar))).^2);
G = @(x) G1(x) + G2(x) + G3(x);
Hm1 = @(x) H(x).* (1 ./ G(x));
Hm2 = @(x) (1 ./ G(x));
IntHm1 = integral(Hm1,0,1);
IntHm2 = integral(Hm2,0,1);
Hm = IntHm1 / IntHm2;
P1 = @(x) 6 .* (1 ./ G(x)) .* (H(x) - Hm);
fun = @(x)integral(@(u)P1(u),0,x);
result = integral(fun,0,1,'ArrayValued',true)
result = 0.1310

Plus de réponses (0)

Catégories

En savoir plus sur Simulink dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by