High amplitude in the solution of seconde order differential equation using ode 45
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a code (see below) that solve the second order differential equation. As a output it gives the position and velocity as a function of time. Now I want to plot this position vs time for several values of omega ranging from 0.1 to 1.5. But there are some cases when omega=0.48,0.5,0.85 it gives the solution of position of amplitude 10^91 (diverge solution). I guess this is due to some error but I can not find the error. For other cases of omega it gives consistent result (oscillating behaviour). How to overcome this errors for above omegas. Please help regarding this. I am new to MATLAB.
%% MAIN PROGRAM %%
t=linspace(0,10000,5000);
y0=[1 0];
omega=0.85;
[tsol, ysol]=ode45(@(t,y0) firstodefun4(t,y0,omega), t, y0, omega);
position=ysol(:,1);
velocity=ysol(:,2);
%% FUNCTION DEFINITION%%
function dy=firstodefun4(t,y0,omega)
F=1;gamma=0.01;omega0=1;
kappa=0.15;
dy=zeros(2,1);
dy(1)=y0(2);
dy(2)=2*F*sin(omega*t)-2*gamma*y0(2)-omega0^2*(1+4*kappa*sin(2*omega*t))*y0(1);
end
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!