How to calculate double integral?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi! I have a problem with solution of double integral. The syms solves too long and it cannot be used.But in another way I have problem.
I have an integral fun2 on z and it has x which is a variable in the integral fun0. How can I set a variable x to first calculate the integral f2 over z, and then integral f3 over x? (Of course, when I set x=some number I obtain a curve or a set of curves if x=0:0.1:1 and make for j = 1:length(x), but I doubt about this result, because the behavior of curves is not correct).
clear all, close all
n=1;
t=1;
r=1;
s=0:0.2:10;
for i = 1:length(s)
k=s(i);
fun2=@(z)(z.*exp(2.*n.*t.*z.^2).*(besselj(0,(k.*z.*x)))./sqrt(1-z.^2));
f2(i,:)=integral(fun2,0,1);
fun0=@(x)(((((x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/(r.^2)).^2)))).*f2(i));
f3(i,:)=integral(fun0,0,inf);
end
Cor=8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi)))).*f3;
plot(s,Cor,'b-');
0 commentaires
Réponse acceptée
Torsten
le 16 Déc 2022
Modifié(e) : Torsten
le 16 Déc 2022
n = 1 ;
t = 1;
r = 1;
s = 0:0.2:10;
fun = @(x,z,k) x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/r^2).^2 .* z.*exp(2*n*t.*z.^2).*besselj(0,k.*z.*x)./sqrt(1-z.^2);
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s)
Cor = 8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi))))*f3
plot(s,Cor,'b-')
grid on
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
