what if the some rows of matrix M is zeros

6 vues (au cours des 30 derniers jours)
Chandan
Chandan le 24 Avr 2023
Commenté : Chandan le 11 Déc 2023
In fluid mechnics problems, we get quadratic eigenvalue problem . But most of the element of the co-effiencient matrix of lamda^2 are zeros. When i used polyeig function i am getting some of the eigenvalue as infinity? how to interpret the results
  2 commentaires
Matt J
Matt J le 24 Avr 2023
Please Demonstrate what you are seeing for us.
Chandan
Chandan le 24 Avr 2023
Modifié(e) : Torsten le 24 Avr 2023
polyeig function solve polynomial eigenvalue problem. Such as an example (Mλ^2++K)x=0, where λ is eigenvalue and x is eigenfunction. M , C, and K are matrices. In fluid mechanics we also get such problem where we have to solve the quadratic eigenvalue problem. In my case, I have to solve a polynomial eigenvalue problem similar to (Mλ^2++K)x=0, but in my case there are some rows of the matrix M whose all elements are zero. I tried my problem solving using polyeig function but i am getting some eigenvalue as infinity.
M = diag([3 0 3 1]);
C = [0.4 0 -0.3 0;0 0 0 0;-0.3 0 0.5 -0.2;0 0 -0.2 0.2];
K = [-7 2 4 0;2 -4 2 0;4 2 -9 3;0 0 3 -3];
[X,e] = polyeig(K,C,M)
X = 4×8
0 0 0.2887 0.4940 0.4581 -0.4593 0.2968 -0.4855 1.0000 1.0000 -0.1210 0.1747 0.4861 -0.4865 -0.1209 -0.1715 0 0 -0.5307 -0.1446 0.5141 -0.5137 -0.5386 0.1425 0 0 0.7876 -0.8393 0.5381 -0.5372 0.7792 0.8453
e = 8×1
Inf -Inf -2.4145 -1.6607 -0.3708 0.3580 2.0897 1.4984

Connectez-vous pour commenter.

Réponse acceptée

Sai Kiran
Sai Kiran le 26 Avr 2023
Hi,
[X,E] = POLYEIG(A0,A1,..,Ap) solves the polynomial eigenvalue problem of degree p:
(A0 + lambda*A1 + ... + lambda^p*Ap)*x = 0.
The input is p+1 square matrices, A0, A1, ..., Ap, all of the same order, n. The output is an n-by-n*p matrix, X, whose columns are the eigenvectors, and a vector of length n*p, E, whose elements are the eigenvalues.
If A0 or Ap is a singular matrix then you will get some of the eigen values to be infinity. Here M is your Ap and it is a singular matrix.
I hope it helps!
Thanks.

Plus de réponses (0)

Catégories

En savoir plus sur Particle & Nuclear Physics dans Help Center et File Exchange

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by