Unable to solve the collocation equations -- a singular Jacobian encountered.
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
function Sc_1
% Define constants
phi = 0.02;
R_s = 1738;
R_f = 1053;
S_s = 230000000;
S_f = 0.18;
Cp_s = 1046.7;
Cp_f = 3594;
K_s = 156;
K_f = 0.492;
We = 0.3;
Ha = 0.3;
A = 0.1;
Pr = 4;
Q_star = 0.1;
Ec = 0.1;
s_1 = 0.1;
Sc = 0.3;
s_2 = 0.1;
Kr = 0.2;
s_3 =0.1;
Lb = 0.3;
Pe = 0.1;
delta_1 = 0.1;
k_prime = 0.2;
k_2prime = 0.1;
M_0 = 0.6;
alpha = pi/2;
n = -0.803;
B_2 = (1 - phi)^-2.5;
B_1 = (1-phi)+phi*(R_s/R_f);
B_4 = ((1-phi)+phi*((R_s*Cp_s)/(R_f*Cp_f)));
B_3 = ((S_s+2*S_f)-2*phi*(S_f-S_s))/((S_s+2*S_f)+phi*(S_f-S_s));
B_5 = ((K_s+2*K_f)-2*phi*(K_f-K_s))/((K_s+2*K_f)+phi*(K_f-K_s));
% Solve the BVP
% Create an options structure with specified tolerances and a Jacobian function
x = linspace(0, 1, 10);
options = bvpset('RelTol',1e-6,'AbsTol',1e-6);
solinit = bvpinit(x, [1 1 1 0 0 0 0 0 0]);
sol = bvp4c(@bvpexam2, @bcfun, solinit, options);
x_vals = sol.x;
y_vals = sol.y;
% Plot the solutions
figure(1);
plot(x_vals, y_vals(2,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
figure(2);
plot(x_vals, y_vals(4,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
figure(3);
plot(x_vals, y_vals(6,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
figure(4);
plot(x_vals, y_vals(8,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
% Boundary and ODE functions
function res = bcfun(ya, yb)
res = [Pr*ya(1) + (B_5/B_1)*M_0*ya(5)-0;
ya(2) - 1;
ya(4)+k_prime*ya(5)-0;
ya(6)+k_2prime*ya(7)-0;
ya(8)-0;
yb(2) - A;
yb(4) - (1 - s_1);
yb(6) - (1 - s_2);
yb(8) - (1 - s_3)];
end
function ysol = bvpexam2(x, y)
yy1 = (B_1*(y(2)^2 - y(1) * y(2)) + B_3*sin(alpha)^2*Ha*(y(2)-A) - A^2)/(B_2 + (3*(n- 1)/2)*B_2*We*y(3)*y(3));
yy2 = ((Pr*B_4)*(s_1*y(2) + y(2)*y(4) - y(1)*y(5)) ...
- B_2*Pr*Ec*((y(3))^2)*((1+(3*(n-1)/2))*We*(y(3))^2) + Q_star*(y(4)+s_1) ...
- B_3*Ha*Ec*Pr*((sin(alpha))^2)*((y(2) - A)^2))/B_5;
yy3 = Sc*(y(2)*y(6) + s_2*y(2) - y(1)*y(7)) - Kr*(y(6)+ 1/s_2);
yy4 = Lb*(y(8)+s_3) - Lb*y(9) + Pe*(y(9)*y(7) + (y(8)+delta_1+s_3));
ysol= [y(2); y(3); yy1; y(5); yy2; y(7); yy3; y(8); yy4];
end
end
7 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Boundary Value Problems dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!