How is calculated the determinant of a matrix containing a fourier transform?
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone. Let's assume that there are two paired differential equations as shown in equations 1 and 2 and that these equations are solved, that is, the values of A and B are known. However, to find the behavior of
and
in the frequency domain, the time derivatives of these equations are taken by taking the Fourier transform to obtain equations 3 and 4. Then, when the linear equation system is formed using equations 3 and 4, how is jw calculated when finding the determinant of the coefficient matrix of the system?
Sample number: N=1024 and Sample frequency: Fs=4kHz
3 commentaires
Torsten
le 8 Juil 2025
Modifié(e) : Torsten
le 8 Juil 2025
I thought you want to reconstruct F_A(omega) and F_B(omega) given A(omega) and B(omega). So why do you need a determinant to do this ? You can simply solve equation (3) for F_A(omega) and equation (4) for F_B(omega) (after computing the Fourier Transforms of A(t) and B(t)).
Réponse acceptée
Matt J
le 8 Juil 2025
Modifié(e) : Matt J
le 8 Juil 2025
N=1024; Fs=4000;
f=(0:(N-1-ceil((N-1)/2)))/N*Fs;
jw = 1j*2*pi*f;
determinant = (jw-x2).*y1 - (jw-x1).*y2 ;
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Discrete Fourier and Cosine Transforms dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!