Invalid training data. Predictors and responses must have the same number of observations.
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I wan to train a LSTM.
But I get Error:
Error using trainNetwork (line 191)
Invalid training data. Predictors and responses must have the same number of observations.
layers = [ ...
sequenceInputLayer(6)
lstmLayer(120,'OutputMode','last')
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',20, ...
'MiniBatchSize',32, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Shuffle','every-epoch', ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain, YTrain, layers, options);



0 commentaires
Réponse acceptée
Matt J
le 28 Août 2025
Modifié(e) : Matt J
le 28 Août 2025
Your XTrain shouldn't be a 100x6 cell. It should be a 100x1 cell where each XTrain{i} is a matrix with 6 rows. Example,
layers = [ ...
sequenceInputLayer(6)
lstmLayer(120,'OutputMode','last')
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
for i=1:100
XTrain{i,1} = rand(6,randi(20));
end
YTrain = categorical(randi([0,1],100,1));
whos YTrain
XTrain,
options = trainingOptions('adam', ...
'MaxEpochs',20, ...
'MiniBatchSize',32, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Shuffle','every-epoch', ...
'Verbose',1, ...
'Plots','none');
net = trainNetwork(XTrain, YTrain, layers, options)
3 commentaires
Matt J
le 28 Août 2025
Modifié(e) : Matt J
le 28 Août 2025
The error is complaining that you have not removed the output layer (classificationLayer) from your layers array. Output layers do not belong in the network when training with trainnet, because the loss function is separately specified to trainnet using the lossFcn input parameter.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!