Solving a system of matrix equations numerically
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have four matrix equations including one unknown column vector w that I want to solve for. I know how to solve a system in of linear equations in matrix form. However, in this case I have different equations in matrix form and I am not sure how to solve this especially since there is an integral over a matrix exponential in two of the equations. The system looks as follows (this is not the actual code but rather the problem as it is written down):
A*w = B*w
C*w = D*w
m*integral(expm(Lambda*x),0,N)*w = 0
(E + F*integral(expm(Lambda*x),0,N)) = 1
A, B, C, D, E, and F are known matrices, m is a row vector and N a parameter. I do not expect any complete solutions. I just need a hint how to solve the whole system (preferably without symbolic toolbox) and how to cope with the matrix exponential since I am new to Matlab. Thanks in advance!
2 commentaires
Torsten
le 29 Juil 2016
Modifié(e) : Torsten
le 29 Juil 2016
x is a scalar, Lambda is a dense matrix and integration of the resulting matrix is elementwise ?
Or maybe Lambda is a diagonal matrix ?
And the last equation holds of every element of the matrix (E + F*integral(expm(Lambda*x),0,N)) ?
Or "1" is the identity matrix ?
So many questions ...
Best wishes
Torsten.
Réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!