symbolic calculations for physical system doesn't give apropriated answer.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I'm trying to solve the equations of motion of a triple inverted pendulum with matlab as in figure below
my code is as follows :
clear variables
digits(5);
syms phi1(t)
syms phi2(t)
syms phi3(t)
syms s(t)
syms u(t)
d1=0.215;
d2=0.002;
d3=0.002;
J1=0.013;
J2=0.024;
J3=0.018;
a1=0.215;
a2=0.269;
a3=0.226;
g=9.81;
l1=0.323;
l2=0.419;
m1=0.876;
m2=0.938;
m3=0.553;
mc=1; %actually we I didn't find the mass of the cart.
R=0.5*d1*diff(phi1,t)^2+0.5*d2*(diff(phi2,t)-diff(phi1,t))^2+0.5*d3*(diff(phi3,t)-diff(phi2,t))^2;
q=[phi1;phi2;phi3;s];
qdot=diff(q,t);
q=formula(q);
qdot=formula(qdot);
pc0=[s;0]; %position of the cart
pc1=[s-a1*sin(phi1);a1*cos(phi1)];
pc2=[s-l1*sin(phi1)-a2*sin(phi2);l1*cos(phi1)+a2*cos(phi2)];
pc3=[s-l1*sin(phi1)-l2*sin(phi2)-a3*sin(phi3);l1*cos(phi1)+l2*cos(phi2)+a3*cos(phi3)];
yc1=[0,1]*pc1;
yc2=[0,1]*pc2;
yc3=[0,1]*pc3;
vc1=diff(pc1,t);
vc2=diff(pc2,t);
vc3=diff(pc3,t);
vc1Norm2=transpose(vc1)*vc1;
vc1Norm2=simplify(vc1Norm2);
vc2Norm2=transpose(vc2)*vc2;
vc2Norm2=simplify(vc2Norm2);
vc3Norm2=transpose(vc3)*vc3;
vc3Norm2=simplify(vc3Norm2);
V=g*(m1*yc1+m2*yc2+m3*yc3);
T=0.5*(mc*diff(s,t)^2+m1*vc1Norm2+m2*vc2Norm2+m3*vc3Norm2+J1*diff(phi1,t)^2+J2*diff(phi2,t)^t+J3*diff(phi3,t)^2);
T=simplify(T);
L=T-V;
L=simplify(L);
R=0.5*(d1*diff(phi1,t)^2+d2*(diff(phi2,t)-diff(phi1,t))^2+d3*(diff(phi3,t)-diff(phi2,t))^2);
eulerLagrange=@(f,t,x,xd) diff(diffDepVar(f,xd),t)-diffDepVar(f,x)+diffDepVar(R,xd);
dL1=eulerLagrange(L,t,phi1,diff(phi1,t));
eqn1=dL1==0;
eqn1=simplify(eqn1);
dL2=eulerLagrange(L,t,phi2,diff(phi2,t));
eqn2=dL2==0;
eqn2=simplify(eqn2);
dL3=eulerLagrange(L,t,phi3,diff(phi3,t));
eqn3=dL3==0;
eqn3=simplify(eqn3);
eqn4=u==diff(diff(s,t),t);
[V,Y]=odeToVectorField(eqn1,eqn2,eqn3,eqn4);
V=subs(V,u,0);
f=matlabFunction(V,'vars',{'t','Y'});
tspan=[0,1];
y0=[0;0;0;0;0;0;pi/2;0];
[t,y]=ode45(f,tspan,y0);
for some reason, when I plot the answer y is a matrix containing more NaN than anything else. I thought that this may be due to the fact that f contains very big values (ex : 10^22). What do you think?
0 commentaires
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Number Theory dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!