how i can found the region of absolute stability ?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
sadeem alqarni
le 7 Juil 2018
Commenté : sadeem alqarni
le 8 Juil 2018
n=0:30:180
h=((768 *cos((1/2)*n) + 96* cos(n) - 864) ./ (40*cos (1/2*n)+ 2*cos(n)+ 102))
figure
plot(n,h, 'b*-', 'LineWidth', 2)
grid on;
xlabel('n', 'FontSize', 20);
ylabel('h', 'FontSize', 20);
Réponse acceptée
Image Analyst
le 7 Juil 2018
Because you're using / (array division) instead of ./ (element by element division). Try this:
n=0:30:180
h=((768 *cos((1/2)*n) + 96* cos(n) - 864) ./ (40*cos (1/2*n)+ 2*cos(n)+ 102))
figure
plot(n,h, 'b*-', 'LineWidth', 2)
grid on;
xlabel('n', 'FontSize', 20);
ylabel('h', 'FontSize', 20);
% Do it again with more resolution.
n = linspace(min(n), max(n), 1000);
h=((768 *cos((1/2)*n) + 96* cos(n) - 864) ./ (40*cos (1/2*n)+ 2*cos(n)+ 102))
hold on;
plot(n,h, 'r-', 'LineWidth', 2)
grid on;
xlabel('n', 'FontSize', 20);
ylabel('h', 'FontSize', 20);

1 commentaire
Plus de réponses (2)
sadeem alqarni
le 8 Juil 2018
2 commentaires
Image Analyst
le 8 Juil 2018
How is this an "Answer" to your original question? Anyway, as you can see from my plot, it depends on how you define stable. The values are constantly changing so they're not stable, however the overall pattern seems pretty stable - it seems to oscillate pretty much the same way over the time period plotted.
Voir également
Catégories
En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
