What is the minimum slope of y=x^3-9*x^2+15*x? matlab code

2 vues (au cours des 30 derniers jours)
Busra Tabak
Busra Tabak le 16 Déc 2018
Commenté : Image Analyst le 16 Déc 2018
What is the minimum slope of y=x^3-9*x^2+15*x?
  2 commentaires
madhan ravi
madhan ravi le 16 Déc 2018
what have you tried so far?
Busra Tabak
Busra Tabak le 16 Déc 2018
syms x
f=x^3-9*x^2+15*x;
fprime=diff(f,x);
fdprime=diff(fprime,x);
xstar=double(solve(fprime==0,x));
xstar=unique(xstar);
for i=1:numel(xstar)
if subs(fdprime,x,xstar(i))>0
disp('min')
double(subs(f,x,xstar(i)))
end
end
I wrote this code and got this solution. Is it correct?
min
ans =
-25

Connectez-vous pour commenter.

Réponses (1)

Image Analyst
Image Analyst le 16 Déc 2018
Hint:
slope = 3 * x .^ 2 - 18 * x + 15; % Derivative.
minSlope = min(slope)
minAbsSlope = min(abs(slope))
Plot it, using linspace() for x, and see what you see. Of course since it's a parabola, the min absolute value of the slope will be zero and the min slope will depend on how far negative you want to evaluate x. For x that is more negative, the slope will be steeper.
  2 commentaires
Busra Tabak
Busra Tabak le 16 Déc 2018
I do not understand and I can not write the code. Did you find -25 as answer?
Image Analyst
Image Analyst le 16 Déc 2018
No, of course not. Did you just plot the function and see it? Nowhere does it turn downwards and have a negative slope:
x = linspace(-50, 50, 100000);
y = x.^3-9*x.^2+15*x;
subplot(2, 1, 1);
plot(x, y, 'b-')
grid on;
fontSize = 20;
title('y = x .^ 3 - 9 * x .^ 2 + 15 * x', 'FontSize', fontSize, 'Interpreter', 'none');
xlabel('x', 'FontSize', fontSize, 'Interpreter', 'none');
ylabel('y', 'FontSize', fontSize, 'Interpreter', 'none');
slope = 3 * x .^ 2 - 18 * x + 15; % Derivative.
minSlope = min(slope)
minAbsSlope = min(abs(slope))
subplot(2, 1, 2);
plot(x, slope, 'b-')
xlabel('x', 'FontSize', fontSize, 'Interpreter', 'none');
ylabel('Slope of y', 'FontSize', fontSize, 'Interpreter', 'none');
title('slope = 3 * x .^ 2 - 18 * x + 15', 'FontSize', fontSize, 'Interpreter', 'none');
grid on;
0000 Screenshot.png
It's a parabola so what do you think the min absolute slope would be? And don't you see and understand that the min slope (most negative) will depend on how far out into the negative x territory you want to go?

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by