Eshelby's tensor for three dimensional mesh
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dear all,
Seasons' greetings.
I am trying to find out the Eshelby's tensor for superellipsoid system. I am following the protocol of finding flux integral from this link https://www3.nd.edu/~nancy/Math20550/Matlab/Assignments/SurfaceIntegrals/surfaceintegrals.html#27
The code returns me the symbolic coefficients, rather than any numeric value.
Please help.
%%%%%%%%%%%%%%% designing superellipsoid %%%%%%%%%%%%%%%%%
%declare constants%
a1=25; a2=25; a3=25; epsilon1=1; epsilon2=1; epsilon3=1;
n=100;
%declare variables%
etamax=pi/2; etamin=-pi/2;
wmax=pi; wmin=-pi;
deta=(etamax-etamin)/n;
dw=(wmax-wmin)/n;
[i,j] = meshgrid(1:n+1,1:n+1);
eta = etamin + (i-1) * deta; w = wmin + (j-1) * dw;
%%%%%%%%%%%%%%% crating symbolic variables %%%%%%%%%%%%%%%%%
syms eta w
ellip=[(a1.*sign(cos(eta)).*abs(cos(eta)).^epsilon1.*sign(cos(w)).*abs(cos(w)).^epsilon1),(a2.*sign(cos(eta)).*abs(cos(eta)).^epsilon2.*sign(sin(w)).*abs(sin(w)).^epsilon2),(a3.*sign(sin(eta)).*abs(sin(eta)).^epsilon3)];
F=[(a1.*sin(eta).*cos(w)) (a2.*sin(eta).*sin(w)) (a3.*cos(eta))];
nds=simplify(cross(diff(ellip,eta),diff(ellip,w)));
Fpar=subs(F,[(a1.*sin(eta).*cos(w)) (a2.*sin(eta).*sin(w)) (a3.*cos(eta))],ellip);
Fj=@(Fpar,nds)Fpar.*transpose(nds);
flux=(symint2(Fj,eta,-pi,pi,w,-(pi/2),(pi/2)));
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!