multcompare and anovan result in zero and nan
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
sarah Abdellahi
le 21 Mar 2019
Commenté : Jeff Miller
le 27 Mar 2019
I want to perform a multcompare test on my data set and find which parameter or the cobination of parameters can change the mean value of my response value. Here is the code I use:
%%
X = readtable('HHH.xlsx','sheet',3);
y=[X.UL]';
g1=X.Type;
g2=X.ThicknessSP;
g3=X.ThicknessDP;
g4=X.Weight;
g5=X.Adhesion;
[~,~,stats] = anovan(y,{g1 g2 g3 g4 g5},'model','interaction',...
'varnames',{'g1','g2','g3','g4','g5'});
But what I get is all Nan and zeros.
Can you please help me?
I have attached my data.
Thanks
Réponse acceptée
Jeff Miller
le 23 Mar 2019
You can't use anovan with numerical predictors like thickness, weight, and adhesion. Have a look at regression models. You will probably need a lot more data, though, to separate out the effects of these different predictors.
5 commentaires
Jeff Miller
le 27 Mar 2019
I suspect you don't have enough data to estimate all the two-way interactions (i.e., empty cells in some of the 2x2 designs). Does it work with 'model','linear'? This might be all that can be computed with your data set. Or maybe you can get some of the 2-way interactions using a 'terms' matrix. But evidently you cannot get all of the 2-way interactions, which is what you are asking for with 'model','interaction'.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Analysis of Variance and Covariance dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!