fsolve & linsqnonlin cant solve my equations

1 vue (au cours des 30 derniers jours)
moein vahidian
moein vahidian le 6 Août 2019
Hello
Fsolve does not have the power to solve my logarithmic nonlinear equation system.
my codes are:
clear all
close all
clc
for i=1:1
Ss(1)=0.000202028;
li=0.0;
Ma=log(0.23178)+8.2+2*0.00132-li;
Mb=log(0.04)+8.2+0.00132-li;
Mc=log(0.5087)+2*15.43+0.00132-li;
Md=log(0.0006)+2*0.12-li;
Me=log(4e-5)+15.43+0.12-li;
Mf=log(7e-12)+012-li;
Mg=log(3.082e-9)+2*0.00132-li;
Mh=log(1.203e-6)+2*15.43-li;
Mi=log(3.004e-8)+15.43+0.00132-li;
Mq=log(3.03e-10)+0.00132-li;
Mk=log(2e-4)+15.43-li;
Ml=log(2e-4)+3.92+2*0.00132-li;
Maa=log(2.028e-6)+3.92+3*0.00132-li;
Mbb=log(0.0372)+60.7+2*0.12-li;
Mcc=log(5.3e-3)+60.7-li;
Mdd=log(7.2e-8)+2*15.43+2*0.00132-li;
Mee=log(7.2e-2)+8.2+3*15.43+0.12-li;
Mff=log(1.113e-12)+6*8.2+6*15.43+0.00132-li;
Mgg=log(5.42e-10)+7*8.2+8*15.43-li;
Mhh=log(9.93e-9)+8.2+4*0.12-li;
Mii=log(0.103976653094887)+4*8.2+8*15.43+2*0.00132-li;
functiun=@(x)[Ma+log(x(1)/(sum(x(1:21))))+x(22)+2*x(27)-1.348134673384821e+01-li;
Mb+log(x(2)/(sum(x(1:21))))+x(22)+x(27)-9.964888350263596e+00-li;
Mc+log(x(3)/(sum(x(1:21))))+2*x(23)+x(27)-6.037084634569317e+01-li;
Md+log(x(4)/(sum(x(1:21))))+2*x(24)+1.435716180549626e+01-li;
Me+log(x(5)/(sum(x(1:21))))+x(23)+x(24)-1.084673779229932e+01-li;
Mf+log(x(6)/(sum(x(1:21))))+x(24)+3.925022193374647e+01-li;
Mg+log(x(7)/(sum(x(1:21))))+2*x(27)+3.919009420009697e+01-li;
Mh+log(x(8)/(sum(x(1:21))))+2*x(23)-3.445861575805654e+01-li;
Mi+log(x(9)/(sum(x(1:21))))+x(23)+x(27)+3.778832020100956e+00-li;
Mq+log(x(10)/(sum(x(1:21))))+x(27)+4.383193662083836e+01-li;
Mk+log(x(11)/(sum(x(1:21))))+x(23)-1.382561361716752e+01-li;
Ml+log(x(12)/(sum(x(1:21))))+x(26)+2*x(27)+9.189106382832476e+00-li;
Maa+log(x(13)/(sum(x(1:21))))+x(26)+3*x(27)+1.836900094447068e+01-li;
Mbb+log(x(14)/(sum(x(1:21))))+x(25)+2*x(24)-1.152971069645939e+02-li;
Mcc+log(x(15)/(sum(x(1:21))))+x(25)-1.109199030831519e+02-li;
Mdd+log(x(16)/(sum(x(1:21))))+2*x(23)+2*x(27)-2.883208056413929e+01-li;
Mee+log(x(17)/(sum(x(1:21))))+x(22)+3*x(23)+x(24)-1.039578216800678e+02-li;
Mff+log(x(18)/(sum(x(1:21))))+6*x(22)+6*x(23)+x(27)-2.285147159127297e+02-li;
Mgg+log(x(19)/(sum(x(1:21))))+7*x(22)+8*x(23)-3.190084897710221e+02-li;
Mhh+log(x(20)/(sum(x(1:21))))+x(22)+4*x(24)+1.949541071777866e+01-li;
Mii+log(x(21)/(sum(x(1:21))))+4*x(22)+8*x(23)+2*x(27)-3.079581022109709e+02-li;
x(1)+x(2)+x(17)+6*x(18)+7*x(19)+x(20)+4*x(21)-.7596866261102260-li;
2*x(3)+x(5)+2*x(8)+x(9)+x(11)+2*x(16)+3*x(17)+6*x(18)+8*x(19)+8*x(21)-2.0654558091417741-li;
2*x(4)+x(5)+x(6)+2*x(14)+x(17)+4*x(20)-0.1476400397270000-li;
x(14)+x(15)-0.0425-li;
x(12)+x(13)-Ss(i)-li;
2*x(1)+x(2)+x(3)+2*x(7)+x(9)+x(10)+2*x(12)+3*x(13)+2*x(16)+x(18)+2*x(21)-1.2206195706978869-li];
format long
x0=11*[0.1,0.003,0.46,0.0001,3e-13*ones(1,6),0.0001,0.0001,2e-8,0.03,0.005,7e-8,7e-2,1e-12*ones(1,3),0.1,2e-3*ones(1,6)];
lb=10*[0.2,0.02,0.48,0.0001,3e-13*ones(1,6),0.0001,0.0001,2e-8,0.03,0.005,7e-8,7e-2,1e-12*ones(1,3),0.1,2e-3*ones(1,6)];
ub=12*[0.2,0.04,0.43,0.08*ones(1,17),0.092,80*ones(1,6)];
options = optimoptions('fsolve','display','final',...
'SubproblemAlgorithm','cg','TolPCG',1e-60,'PlotFcn',@optimplotfirstorderopt);
options.TolFun=1e-60;
options.TolX=1e-70;
options.FinDiffRelStep=1e-35;
options.StepTolerance = 9.000000e-30;
options.MaxFunctionEvaluations = 40000;
options.MaxIterations=4000;
options.FunctionTolerance = 1.000000e-60;
options.DiffMinChange=1e-20;
options.FiniteDifferenceStepSize=eps^(1/100);
[x]=fsolve(functiun,x0,options)
X(1,1:21)=[x(1:21)./(sum(x(1:21)))];
gama=x(22:27);
Ss(i+1)=Ss(i)+0.01;
Yi(i,:)=[Ss(i),X];
end
Yi
my all answers must be positive real numbers.
please help me to find the Logical answers.
  1 commentaire
Star Strider
Star Strider le 6 Août 2019
Your bounds are positive real numbers:
lb=10*[0.2,0.02,0.48,0.0001,3e-13*ones(1,6),0.0001,0.0001,2e-8,0.03,0.005,7e-8,7e-2,1e-12*ones(1,3),0.1,2e-3*ones(1,6)];
ub=12*[0.2,0.04,0.43,0.08*ones(1,17),0.092,80*ones(1,6)];
The fsolve function is just doing what you told it to do.

Connectez-vous pour commenter.

Réponses (1)

Alex Sha
Alex Sha le 3 Fév 2020
The unique stable results:
x1: 0.231780000872077
x2: 0.040000000119062
x3: 0.508699999227432
x4: 0.00060000005989538
x5: 4.00000019482743E-5
x6: 7.000000354627E-12
x7: 3.08200000992225E-9
x8: 1.20299999709649E-6
x9: 3.00400000121042E-8
x10: 3.03000000714195E-10
x11: 0.000199999999908122
x12: 0.000200000568432005
x13: 2.02800576564968E-6
x14: 0.037199999049156
x15: 0.00529999934366693
x16: 7.19999999504065E-8
x17: 0.0720000032633384
x18: 1.11299999376581E-12
x19: 5.41999994718794E-10
x20: 9.93000197396267E-9
x21: 0.103976652060141
x22: 8.19999999937223
x23: 15.4300000019541
x24: 0.11999995083354
x25: 60.7000001253405
x26: 3.91999716104927
x27: 0.00131999913765192
Fevl:
-6.58726406754795E-11
1.04982689208555E-11
5.12230258209456E-11
1.67741376344566E-11
1.85629289717326E-11
1.86304305316298E-11
1.87725390787818E-11
1.87370119419938E-11
1.8754331421178E-11
1.87796445061394E-11
1.87778681493E-11
4.62563320979825E-12
4.77839989798667E-12
-2.86064505417016E-11
2.80806489172392E-11
1.87263538009574E-11
-8.36877234178246E-11
1.86162196769146E-11
1.85877979674842E-11
1.8218315744889E-11
-3.10365066980012E-11
1.1549539102873E-10
-3.12381231992731E-11
1.48339734939995E-9
-1.60717707198277E-9
5.74197654674242E-10
1.75317094175398E-10

Catégories

En savoir plus sur Optimization dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by