hi I am trying to calculate the 4th root of the function f(x)=3x4+7x3−4x2−10x+15 using newtons method and a for - loop

5 vues (au cours des 30 derniers jours)
% EMTH171
% script using newtons method
clear
clc
close all
% function
f = @(x) 3*x.^4 + 7*x.^3 - 4*x.^2 - 10*x + 1/5;
% derivative
d = @(x) 12*x.^3 + 21*x.^2 - 8*x - 10;
% test value
x = -0.5;
N = 100;
for ii =1 : N
x = x - f(x)/d(x);
end
z = nArray(4,1);
disp(z);
  3 commentaires
David Hill
David Hill le 30 Août 2020
Modifié(e) : David Hill le 30 Août 2020
If you graph it, you can see where the 4 roots are approximately.
f = @(x) 3*x.^4 + 7*x.^3 - 4*x.^2 - 10*x + 1/5;
x=-2.4:.001:1.3;
plot(x,f(x));
grid on;
David Hill
David Hill le 30 Août 2020
I think you just need to pick your test value closer to the root you are trying to find.

Connectez-vous pour commenter.

Réponses (1)

Rafael Hernandez-Walls
Rafael Hernandez-Walls le 30 Août 2020
clear
clc
close all
% function
f = @(x) 3*x.^4 + 7*x.^3 - 4*x.^2 - 10*x + 1/5;
% derivative
df = @(x) 12*x.^3 + 21*x.^2 - 8*x - 10;
%first graphic
x=-2.4:.001:1.3;
plot(x,f(x));
grid on;
% test value; click with mouse near x=1
[x y]=ginput(1);
%iterations newton method
N = 100;
for ii =1 : N
x = x - f(x)/df(x);
end
disp('Solution:')
x

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by