Vectorize for loop: corr2(A(:,:,i),B(:,:,i))
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
William Thielicke
le 3 Déc 2020
Commenté : Bruno Luong
le 3 Déc 2020
Hi, I am trying to accelerate a function and am unable to perform this myself, so I am hoping for your help.
I have a set of 10.000 small images (64x64), and I need to calculate the correlation coefficient for each of these images. This is the code:
clear all
clc
close all
A=rand(64,64,10000);
B=rand(64,64,10000);
corr_result=zeros(1,1,size(A,3));
tic
for i=1:size(A,3)
corr_result(i)=corr2(A(:,:,i),B(:,:,i));
end
toc
I found this, it results in a 64x64x1 matrix, but I need a 1x1x10000 matrix.... Thanks for your input!!
5 commentaires
Ameer Hamza
le 3 Déc 2020
I think this is already as efficient as it can get in MATLAB. After JIT optimizations, for-loops are not as slow as one might think.
Réponse acceptée
Bruno Luong
le 3 Déc 2020
Modifié(e) : Bruno Luong
le 3 Déc 2020
If you have R2020b, you mght try to vectorize with pagemtimes function (or use mtimesx from File exchange)
meanA = mean(A,[1 2]);
meanB = mean(B,[1 2]);
Ac = A-meanA;
Bc = B-meanB;
Ac = reshape(Ac,[],1,size(A,3));
Bc = reshape(Bc,[],1,size(B,3));
% psfun = @(a,b) sum(a.*b,1);
psfun = @(a,b) pagemtimes(a,'transpose',b,'none');
C = psfun(Ac,Bc)./sqrt(psfun(Ac,Ac).*psfun(Bc,Bc))
3 commentaires
Bruno Luong
le 3 Déc 2020
Divide the calculation into a chunks that do not exeed your PC ram, eg 8e4 images.
Plus de réponses (0)
Voir également
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!