How to retrieve optimal MinLeafSize after automatic hyperparameter optimization for Tree Ensemble (fitrensemble)?
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi. I am running MATLAB's automatic Bayesian optimization for a number of parameters for a Tree Ensemble.
opts = struct('Kfold',4,'Optimizer','bayesopt');
Mdl = fitrensemble(X,Y,'OptimizeHyperparameters',{'Method','NumLearningCycles','LearnRate','MinLeafSize'},'HyperparameterOptimizationOptions',opts);
I understand that all the optimal parameters are embedded in the resulted object ‘Mdl’, but I was wondering if it’s possible to retrieve and save in a variable the optimal MinLeafSize. Even though I have found the rest optimized parameters:
Mdl.ModelParameters.Method %Method
Mdl.ModelParameters.NLearn %NumLearningCycles
Mdl.ModelParameters.LearnRate %LearnRate
but, I cannot obtain the MinLeafSize. However, I can see that it is listed among the properties of 'Mdl' under MinLeaf:
Mdl.ModelParameters.LearnerTemplates{1,1}
Anyone knows how to extract this? Thanks.
0 commentaires
Réponse acceptée
Cris LaPierre
le 6 Fév 2021
Modifié(e) : Cris LaPierre
le 6 Fév 2021
I ran both a tree and ensemble models optimizing minLeafSize. For a decision tree, MinLeaf is a model parameter, but not for an ensemble. The only way I could find to see the value was by viewing the template.
Mdl.ModelParameters.LearnerTemplates{1,1}
ans =
Fit template for regression Tree.
SplitCriterion: []
MinParent: []
MinLeaf: 126
MaxSplits: 10
NVarToSample: []
MergeLeaves: 'off'
Prune: 'off'
PruneCriterion: []
QEToler: []
NSurrogate: []
MaxCat: []
AlgCat: []
PredictorSelection: []
UseChisqTest: []
Stream: []
Reproducible: []
Version: 2
Method: 'Tree'
Type: 'regression'
3 commentaires
Bernhard Suhm
le 8 Fév 2021
You can use bestPoint(Mdl.HyperparameterOptimizationResults) to access the hyperparameters of the "best estimated" model, including 'MinLeafSize'
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Regression Tree Ensembles dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!