How to smooth a curve

4 vues (au cours des 30 derniers jours)
Erling Pedersen
Erling Pedersen le 29 Mar 2021
Commenté : Erling Pedersen le 29 Mar 2021
f = [20, 25, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60];
A_x = 0.01.*[0.55, 0.65, 1.05, 1.65, 1.75, 1.85, 2.05, 2.75, 3.05, 3.025, 2.85, 2.65, 2.45, 2.15, 0.95, 0.75, 0.55];
u_A_x = 0.01.*[0.05, 0.05, 0.05, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.2, 0.1, 0.05];
fu = f.*(20/1000000 + 10^(-12))
U = sqrt((((2.*A_x.*(f.^2)).^2).*u_A_x.^2)+(2.*f.*(A_x.^2)).^2.*fu.^2)
f2 = [20, 25, 30, 31, 32 ,33, 34 , 35, 36, 37, 38, 39, 40, 45, 50, 55, 60];
A2_x = [0.95, 1.05, 1.75, 2.15, 3.0, 2.75, 2.65, 2.65, 2.55, 2.1, 1.75, 1.5, 1.45, 0.65, 0.50, 0.45, 0.30];
u_A2_x = [0.05, 0.05, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.05, 0.05, 0.05]
f2u = f2.*(20/1000000 + 10^(-12))
U2 = sqrt((((2.*A2_x.*(f2.^2)).^2).*u_A2_x.^2)+(2.*f2.*(A2_x.^2)).^2.*f2u.^2)
P1 = (f.*A_x).^2
errorbar(f, P1,U)
P2 = (f2.*A2_x).^2
errorbar(f2, P2,U2)

Réponses (1)

Mathieu NOE
Mathieu NOE le 29 Mar 2021
hello
your post is a bit rude, please take 10 seconds to say hello and introduce your topic; that would be a little more respectful for those who take time to help others on this forum
anyway... methods to smooth data are plenty : a few of them are in this demo code
otherwise there could be some curve fitting tools that could also help you
clc
close all
Fs = 1000;
samples = 1000;
dt = 1/Fs;
t = (0:samples-1)*dt;
y = square(2*pi*3*t) + 0.1*randn(size(t));
% %%%%%%%%%%%%%%%%
figure(1)
N = 10;
ys = slidingavg(y, N);
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with slidingavg' ]);
% %%%%%%%%%%%%%%%%
figure(2)
N = 10;
ys = medfilt1(y, N,'truncate');
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with medfilt1' ]);
grid on
%%%%%%%%%%%%%%%%
figure(3)
N = 10;
ys = sgolayfilt(y,3,51);
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with sgolayfilt' ]);
grid on
%%%%%%%%%%%%%%%%
NN = 4;
Wn = 0.1;
[B,A] = butter(NN,Wn);
figure(4)
ys = filtfilt(B,A,y);
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with butterworth LP' ]);
grid on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = slidingavg(in, N)
% OUTPUT_ARRAY = SLIDINGAVG(INPUT_ARRAY, N)
%
% The function 'slidingavg' implements a one-dimensional filtering, applying a sliding window to a sequence. Such filtering replaces the center value in
% the window with the average value of all the points within the window. When the sliding window is exceeding the lower or upper boundaries of the input
% vector INPUT_ARRAY, the average is computed among the available points. Indicating with nx the length of the the input sequence, we note that for values
% of N larger or equal to 2*(nx - 1), each value of the output data array are identical and equal to mean(in).
%
% * The input argument INPUT_ARRAY is the numerical data array to be processed.
% * The input argument N is the number of neighboring data points to average over for each point of IN.
%
% * The output argument OUTPUT_ARRAY is the output data array.
%
% © 2002 - Michele Giugliano, PhD and Maura Arsiero
% (Bern, Friday July 5th, 2002 - 21:10)
% (http://www.giugliano.info) (bug-reports to michele@giugliano.info)
%
% Two simple examples with second- and third-order filters are
% slidingavg([4 3 5 2 8 9 1],2)
% ans =
% 3.5000 4.0000 3.3333 5.0000 6.3333 6.0000 5.0000
%
% slidingavg([4 3 5 2 8 9 1],3)
% ans =
% 3.5000 4.0000 3.3333 5.0000 6.3333 6.0000 5.0000
%
if (isempty(in)) | (N<=0) % If the input array is empty or N is non-positive,
disp(sprintf('SlidingAvg: (Error) empty input data or N null.')); % an error is reported to the standard output and the
return; % execution of the routine is stopped.
end % if
if (N==1) % If the number of neighbouring points over which the sliding
out = in; % average will be performed is '1', then no average actually occur and
return; % OUTPUT_ARRAY will be the copy of INPUT_ARRAY and the execution of the routine
end % if % is stopped.
nx = length(in); % The length of the input data structure is acquired to later evaluate the 'mean' over the appropriate boundaries.
if (N>=(2*(nx-1))) % If the number of neighbouring points over which the sliding
out = mean(in)*ones(size(in)); % average will be performed is large enough, then the average actually covers all the points
return; % of INPUT_ARRAY, for each index of OUTPUT_ARRAY and some CPU time can be gained by such an approach.
end % if % The execution of the routine is stopped.
out = zeros(size(in)); % In all the other situations, the initialization of the output data structure is performed.
if rem(N,2)~=1 % When N is even, then we proceed in taking the half of it:
m = N/2; % m = N / 2.
else % Otherwise (N >= 3, N odd), N-1 is even ( N-1 >= 2) and we proceed taking the half of it:
m = (N-1)/2; % m = (N-1) / 2.
end % if
for i=1:nx, % For each element (i-th) contained in the input numerical array, a check must be performed:
if ((i-m) < 1) & ((i+m) <= nx) % If not enough points are available on the left of the i-th element..
out(i) = mean(in(1:i+m)); % then we proceed to evaluate the mean from the first element to the (i + m)-th.
elseif ((i-m) >= 1) & ((i+m) <= nx) % If enough points are available on the left and on the right of the i-th element..
out(i) = mean(in(i-m:i+m)); % then we proceed to evaluate the mean on 2*m elements centered on the i-th position.
elseif ((i-m) >= 1) & ((i+m) > nx) % If not enough points are available on the rigth of the i-th element..
out(i) = mean(in(i-m:nx)); % then we proceed to evaluate the mean from the element (i - m)-th to the last one.
elseif ((i-m) < 1) & ((i+m) > nx) % If not enough points are available on the left and on the rigth of the i-th element..
out(i) = mean(in(1:nx)); % then we proceed to evaluate the mean from the first element to the last.
end % if
end % for i
end
  1 commentaire
Erling Pedersen
Erling Pedersen le 29 Mar 2021
im sorry didnt know.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Logical dans Help Center et File Exchange

Tags

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by