svds(X,r) and svd(X,'econ') generating different singular vectors for large complex matrix X ??
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I was trying to calculate truncated svd for a large complex matrix X. I noticed that svds(X,r) and svd(X,'econ') seemingly generate different U and V matrices, although the singular values are the same. For example,
A = randn(50,20) + 1i*randn(50,20);
[U,S,V] = svd(A,'econ');
[Ur,Sr,Vr] = svds(A,2);
U(1:4,1:2)
Ur(1:4,1:2)
S(1:2,1:2)
Sr(1:2,1:2)
But when X is small or real, two commands give the same results. For example,
A = randn(50,20);
[U,S,V] = svd(A,'econ');
[Ur,Sr,Vr] = svds(A,2);
U(1:4,1:2)
Ur(1:4,1:2)
S(1:2,1:2)
Sr(1:2,1:2)
Or,
A = randn(10,5) + 1i*randn(10,5);
[U,S,V] = svd(A,'econ');
[Ur,Sr,Vr] = svds(A,2);
U(1:4,1:2)
Ur(1:4,1:2)
S(1:2,1:2)
Sr(1:2,1:2)
Did I misunderstand something? Thanks in advance!
0 commentaires
Réponse acceptée
Bruno Luong
le 9 Avr 2021
Modifié(e) : Bruno Luong
le 9 Avr 2021
The singular value (eigen) decomposition SVD/SVDS is not unique, vectors is up to scaling, (values is up to order for eigen value decomposition - EIG/EIGS), and I'm not talking about multiple singular/eigen values (order > 1).
If you do
U(:,1:2)./Ur(:,1:2)
abs(U(:,1:2)./Ur(:,1:2))
after your code, you can clearly observe they are just proportonal by a unit complex scaling.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!