.Alternate to using for loop or symsum for the summation ∑(const)^n/(n*n!) ?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dear all,
Is there a more computationally efficient way compared to using for loop or symsum (from Symbolic math toolbox) to compute:
∑(const)^n/(n*n!)
const is some constant value, n is the range of limit varying from 1 to infinity (or some high value like 200 for approximating the sum).
-- Thanks, Ram.
2 commentaires
Sean de Wolski
le 26 Juin 2013
Modifié(e) : Sean de Wolski
le 26 Juin 2013
Why not symsum? You're going to need it for factorial greater than 170 anyway:
factorial(171)
Réponse acceptée
Roger Stafford
le 26 Juin 2013
Your sum is equal to the integral
int('(exp(x)-1)/x','x',0,const)
so you could do numerical integration of this rather than summing the infinite series. That integrand is actually well-behaved in the vicinity of x = 0, but computing it might give you some problems, so you could substitute a Taylor series approximation very near x = 0.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!