Could anyone help me on what basis the number of hidden layers are chosen for deep neural network.
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Let me explain in brief.
I have generated the code for deep neural network for regression purpose using numerical data to predict the formation of clusters.
when I run the code, for four hidden layers i can get the lowest value of mean square error as compared to 2 hidden layers,3 hidden layers,5 hidden layers, and 6 hidden layers.
So,I can say four hidden layers are optimal in my case.
But I would like to know is there any other reason other the mean square error to justify why four hidden layers are optimal.
Also let me know, for an image based on pixel, I can find low level features, high level features and so on.
But for numerical data what represent low level and high level features.
Could anyone please clarify me.
0 commentaires
Réponses (1)
Matt J
le 3 Juil 2021
Modifié(e) : Matt J
le 3 Juil 2021
But I would like to know is there any other reason other the mean square error to justify why four hidden layers are optimal.
No, if you change the loss function or any other thing about your network architecture (e.g., number of neurons per layer), you could very well find you get a different optimal number of layers.
But for numerical data what represent low level and high level features.
In general, you won't know that in advance. The main purpose of a neural network is for the network to learn the relevant features on its own are during training.
15 commentaires
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!