Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
%% Simple Trapezoidal Rule
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
assert(isequal(trapezoidal_rule(f,a,b,1),5280))
|
2 | Pass |
%% Composite Trapezoidal Rule for 2 intervals
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
assert(isequal(trapezoidal_rule(f,a,b,2),2634))
|
3 | Pass |
%% Composite Trapezoidal Rule for 4 intervals
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
assert(isequal(trapezoidal_rule(f,a,b,4),1516.875))
|
4 | Pass |
%% Exact analytical comparison
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
P=polyint(p);
I_correct=polyval(P,b)-polyval(P,a);
I=trapezoidal_rule(f,a,b);
assert(abs(I-I_correct)<1)
|
5 | Pass |
%% Exact analytical comparison--higher tolerance
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
I = trapezoidal_rule(f,a,b,1000);
P=polyint(p);
I_correct=polyval(P,b)-polyval(P,a);
assert(abs(trapezoidal_rule(f,a,b,1000)-I_correct)<1e-1)
|
647 Solvers
Find the sum of the elements in the "second" diagonal
879 Solvers
Back to basics 21 - Matrix replicating
901 Solvers
67 Solvers
152 Solvers