Cody

# Problem 1946. Fibonacci-Sum of Squares

Solution 1674702

Submitted on 15 Nov 2018 by Alan
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
n = 5; S = 40; assert(isequal(FibSumSquares(n),S))

S = 1 1 S = 1 1 2 S = 1 1 2 3 S = 1 1 2 3 5 ans = 40

2   Pass
n = 8; S = 714; assert(isequal(FibSumSquares(n),S))

S = 1 1 S = 1 1 2 S = 1 1 2 3 S = 1 1 2 3 5 S = 1 1 2 3 5 8 S = 1 1 2 3 5 8 13 S = 1 1 2 3 5 8 13 21 ans = 714

3   Pass
n = 11; S = 12816; assert(isequal(FibSumSquares(n),S))

S = 1 1 S = 1 1 2 S = 1 1 2 3 S = 1 1 2 3 5 S = 1 1 2 3 5 8 S = 1 1 2 3 5 8 13 S = 1 1 2 3 5 8 13 21 S = 1 1 2 3 5 8 13 21 34 S = 1 1 2 3 5 8 13 21 34 55 S = 1 1 2 3 5 8 13 21 34 55 89 ans = 12816

4   Pass
n = 15; S = 602070; assert(isequal(FibSumSquares(n),S))

S = 1 1 S = 1 1 2 S = 1 1 2 3 S = 1 1 2 3 5 S = 1 1 2 3 5 8 S = 1 1 2 3 5 8 13 S = 1 1 2 3 5 8 13 21 S = 1 1 2 3 5 8 13 21 34 S = 1 1 2 3 5 8 13 21 34 55 S = 1 1 2 3 5 8 13 21 34 55 89 S = 1 1 2 3 5 8 13 21 34 55 89 144 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ans = 602070

5   Pass
n = 21; S = 193864606; assert(isequal(FibSumSquares(n),S))

S = 1 1 S = 1 1 2 S = 1 1 2 3 S = 1 1 2 3 5 S = 1 1 2 3 5 8 S = 1 1 2 3 5 8 13 S = 1 1 2 3 5 8 13 21 S = 1 1 2 3 5 8 13 21 34 S = 1 1 2 3 5 8 13 21 34 55 S = 1 1 2 3 5 8 13 21 34 55 89 S = 1 1 2 3 5 8 13 21 34 55 89 144 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 17 987 1597 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 18 987 1597 2584 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 19 987 1597 2584 4181 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 20 987 1597 2584 4181 6765 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 21 987 1597 2584 4181 6765 10946 ans = 193864606

6   Pass
n = 26; S = 23843770274; assert(isequal(FibSumSquares(n),S))

S = 1 1 S = 1 1 2 S = 1 1 2 3 S = 1 1 2 3 5 S = 1 1 2 3 5 8 S = 1 1 2 3 5 8 13 S = 1 1 2 3 5 8 13 21 S = 1 1 2 3 5 8 13 21 34 S = 1 1 2 3 5 8 13 21 34 55 S = 1 1 2 3 5 8 13 21 34 55 89 S = 1 1 2 3 5 8 13 21 34 55 89 144 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 S = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 17 987 1597 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 18 987 1597 2584 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 19 987 1597 2584 4181 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 20 987 1597 2584 4181 6765 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 21 987 1597 2584 4181 6765 10946 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 22 987 1597 2584 4181 6765 10946 17711 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 23 987 1597 2584 4181 6765 10946 17711 28657 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 24 987 1597 2584 4181 6765 10946 17711 28657 46368 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 25 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 S = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 26 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 ans = 2.3844e+10