Cody

Problem 1946. Fibonacci-Sum of Squares

Solution 2289176

Submitted on 17 May 2020 by Stanislao Pinzón
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
n = 5; S = 40; assert(isequal(FibSumSquares(n),S))

A = 0 1 1 S = 2 A = 0 1 1 2 S = 6 A = 0 1 1 2 3 S = 15 A = 0 1 1 2 3 5 S = 40

2   Pass
n = 8; S = 714; assert(isequal(FibSumSquares(n),S))

A = 0 1 1 S = 2 A = 0 1 1 2 S = 6 A = 0 1 1 2 3 S = 15 A = 0 1 1 2 3 5 S = 40 A = 0 1 1 2 3 5 8 S = 104 A = 0 1 1 2 3 5 8 13 S = 273 A = 0 1 1 2 3 5 8 13 21 S = 714

3   Pass
n = 11; S = 12816; assert(isequal(FibSumSquares(n),S))

A = 0 1 1 S = 2 A = 0 1 1 2 S = 6 A = 0 1 1 2 3 S = 15 A = 0 1 1 2 3 5 S = 40 A = 0 1 1 2 3 5 8 S = 104 A = 0 1 1 2 3 5 8 13 S = 273 A = 0 1 1 2 3 5 8 13 21 S = 714 A = 0 1 1 2 3 5 8 13 21 34 S = 1870 A = 0 1 1 2 3 5 8 13 21 34 55 S = 4895 A = 0 1 1 2 3 5 8 13 21 34 55 89 S = 12816

4   Pass
n = 15; S = 602070; assert(isequal(FibSumSquares(n),S))

A = 0 1 1 S = 2 A = 0 1 1 2 S = 6 A = 0 1 1 2 3 S = 15 A = 0 1 1 2 3 5 S = 40 A = 0 1 1 2 3 5 8 S = 104 A = 0 1 1 2 3 5 8 13 S = 273 A = 0 1 1 2 3 5 8 13 21 S = 714 A = 0 1 1 2 3 5 8 13 21 34 S = 1870 A = 0 1 1 2 3 5 8 13 21 34 55 S = 4895 A = 0 1 1 2 3 5 8 13 21 34 55 89 S = 12816 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 S = 33552 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 S = 87841 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 S = 229970 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 S = 602070

5   Pass
n = 21; S = 193864606; assert(isequal(FibSumSquares(n),S))

A = 0 1 1 S = 2 A = 0 1 1 2 S = 6 A = 0 1 1 2 3 S = 15 A = 0 1 1 2 3 5 S = 40 A = 0 1 1 2 3 5 8 S = 104 A = 0 1 1 2 3 5 8 13 S = 273 A = 0 1 1 2 3 5 8 13 21 S = 714 A = 0 1 1 2 3 5 8 13 21 34 S = 1870 A = 0 1 1 2 3 5 8 13 21 34 55 S = 4895 A = 0 1 1 2 3 5 8 13 21 34 55 89 S = 12816 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 S = 33552 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 S = 87841 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 S = 229970 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 S = 602070 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 S = 1576239 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 18 610 987 1597 S = 4126648 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 19 610 987 1597 2584 S = 10803704 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 20 610 987 1597 2584 4181 S = 28284465 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 21 610 987 1597 2584 4181 6765 S = 74049690 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 22 610 987 1597 2584 4181 6765 10946 S = 193864606

6   Pass
n = 26; S = 23843770274; assert(isequal(FibSumSquares(n),S))

A = 0 1 1 S = 2 A = 0 1 1 2 S = 6 A = 0 1 1 2 3 S = 15 A = 0 1 1 2 3 5 S = 40 A = 0 1 1 2 3 5 8 S = 104 A = 0 1 1 2 3 5 8 13 S = 273 A = 0 1 1 2 3 5 8 13 21 S = 714 A = 0 1 1 2 3 5 8 13 21 34 S = 1870 A = 0 1 1 2 3 5 8 13 21 34 55 S = 4895 A = 0 1 1 2 3 5 8 13 21 34 55 89 S = 12816 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 S = 33552 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 S = 87841 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 S = 229970 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 S = 602070 A = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 S = 1576239 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 18 610 987 1597 S = 4126648 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 19 610 987 1597 2584 S = 10803704 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 20 610 987 1597 2584 4181 S = 28284465 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 21 610 987 1597 2584 4181 6765 S = 74049690 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 22 610 987 1597 2584 4181 6765 10946 S = 193864606 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 23 610 987 1597 2584 4181 6765 10946 17711 S = 507544127 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 24 610 987 1597 2584 4181 6765 10946 17711 28657 S = 1.3288e+09 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 25 610 987 1597 2584 4181 6765 10946 17711 28657 46368 S = 3.4788e+09 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 26 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 S = 9.1075e+09 A = Columns 1 through 15 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 Columns 16 through 27 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 S = 2.3844e+10

Suggested Problems

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!