Cody

Problem 87. Indexed Probability Table

Solution 705966

Submitted on 24 Jul 2015 by Lessmann
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
%% x = [4 4 4 4]; p_correct = [0 0 0 1]; assert(isequal(prob_table(x),p_correct))

p = 0 p = 0 0 p = 0 0 0 p = 0 0 0 4 ans = 0 0 0 1

2   Pass
%% x = [1 2 1 2 1 2 1 2 1 2]; p_correct = [0.5 0.5]; assert(isequal(prob_table(x),p_correct))

p = 5 p = 5 5 ans = 0.5000 0.5000

3   Pass
%% x = [1 1 2 8]; p_correct = [0.5 0.25 0 0 0 0 0 0.25]; assert(isequal(prob_table(x),p_correct))

p = 2 p = 2 1 p = 2 1 0 p = 2 1 0 0 p = 2 1 0 0 0 p = 2 1 0 0 0 0 p = 2 1 0 0 0 0 0 p = 2 1 0 0 0 0 0 1 ans = 0.5000 0.2500 0 0 0 0 0 0.2500

4   Pass
%% x = 1:100; p_correct = 0.01*ones(1,100); assert(isequal(prob_table(x),p_correct))

p = 1 p = 1 1 p = 1 1 1 p = 1 1 1 1 p = 1 1 1 1 1 p = 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 18 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 19 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 20 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 21 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 22 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 23 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 24 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 25 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 26 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 27 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 28 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 29 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 33 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 34 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 35 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 36 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 37 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 38 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 39 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 40 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 41 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 42 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 43 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 44 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 45 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 49 1 p = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 17 through 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 33 through 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Columns 49 through 50 1 1 p =...